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SURFACE AND VOLUME PROPERTIES OF GROUND STATE
NUCLEAR MATTER IN THE HARTREE-FOCK AND
PUFF-MARTIN APPROXIMATIONS

by

John C. Reynolds

ABSTRACT

A method is derived for computing the ground state properties of a
spatially inhomogeneous self-bound system of many particles. This meth-
od is used to compute the density and effective potential across a plane
surface of nuclear matter in the Hartree-Fock approximation and in an
approximation developed by R. D. Puff and P. C. Martin which takes into
account certain two-body correlation effects.

A general theory of many-particle systems is developed in terms
of the n-particle field correlation or Green's functions. It is shown that,
for zero temperature and pressure, this treatment may be extended to
inhomogeneous systems by replacing the condition of spatial homogeneity
on the Green's functions by appropriate asymptotic boundary conditions.
Such conditions are derived for a semi-infinite volume of material with a
single plane surface.

This development is then applied to nuclear matter in the Hartree-
Fock approximation. A solution for homogeneous matter is first obtained.
A Gaussian interparticle potential is used, with depth and range fitted to
low-energy scattering data. Nuclear saturation is produced by using an
admixture of exchange forces. The resulting binding energy per particle
is -3.63 Mev, and the interparticle spacing is 1.25 fermi. These may be
compared with experimental values of -15.75 Mev and 1.1 to 1.2 fermi.

The inhomogeneous geometry described above is then considered.
A shortdevelopment is made of an approximation analogous to the Thomas-
Fermi approximation in atomic physics, but it is shown that this approach
breaks down for nuclear matter and leads to inconsistencies because of the
exchange nature of the forces. A numerical solution for the inhomogeneous
geometry is then obtained by an iterative self-consistent procedure, using
an effective mass approximation. The thickness of the resulting surface
(the distance over which the density drops from 90 per cent to 10 per cent
of its asymptotic value in the interior) is 2.0l compared with an experi-
mental value of 2.5 * 0.2 fermi, and the density function exhibits oscil-
lations near the surface due to the sharpness of the edge. The effective
potential is strongly momentum-dependent but is nearly isotropic.



A similar treatment is carried out for the Puff-Martin approxima -
tion. In this approximation the effective potential becomes an energy -
dependent function which is expressed as a folding integral of the spectral
function of the system and a two-body scattering matrix. An ambiguity in
the definition of the pressure appears in the approximation; it is resolved
by showing that a pressure expression derived from local-transport con-
siderations must be used to insure the existence of time-independent solu-
tions for the inhomogeneous case.

We follow Puff in using an interparticle potential consisting of a
separable Yamaguchi potential plus an S-state repulsive hard shell. In the
homogeneous case the approximation leads to a binding energy per particle
of -14.4 to -17.5 Mev and an interparticle spacing of 0.871 to 1.01 fermi
(depending on which expression for the pressure is set equal to zero to
obtain an uncompressed system). A computation of the density correlation
function is given.

The inhomogeneous case is again treated by an iterative self-
consistent procedure with an effective-mass approximation. The results
give a surface thickness of 2.33 fermi and a surface energy of 18.79 Mev,
which may be compared with experimental values of 2.5 * 0.2 fermi and
17.804 Mev. As in the Hartree case, the effective potential is nearly iso-
tropic, but now there are no significant oscillations inside the surface.

CHAPTER I

INTRODUCTION AND GENERAL FORMALISM

110 ‘Intreduction

One of the central purposes of nuclear physics is the investigation

of the many-nucleon problem; ideally, the properties of nuclear systems

(beyond the trivial two-particle system) should be derivable from a knowl -
edge of the interparticle potential. At least for the heavier nuclei, one
would expect the number of particles in the system to be sufficiently great
to allow the use of statistical methods. Unfortunately, this approach is
hindered by the existence of the Coulomb repulsion between protons, which
dominates the attractive nuclear forces for sufficiently large nuclei,and

prevents the existence of bound systems of more than a few hundred
particles.

To circumvent this difficulty many authors have examined an ideal -

ized system, usually called nuclear matter, in which the Coulomb repulsion

is removed from the interparticle potential. Under these circumstances

macroF;cc?pically large bound systems will occur which are easily amenable
to statistical methods. Certain properties of actual nuclei, particularly



those which depend smoothly on the number of particles and for which
Coulomb effects are either small or analytically removable, should bear
a close resemblance to the analogous properties of the idealized nuclear
matter.

At present, however, most investigations of nuclear matter have
been limited to homogeneous matter, i.e., to the volume properties of
macroscopically large systems. In this report we will develop an exten-
sion of these investigations to inhomogeneous systems, and in particular
to surface properties. This extension greatly increases the scope of the
nuclear properties which may be obtained from an examination of nuclear
matter.

Our general approach relies upon the description of many-body
systems by a set of n-particle field-correlation or Green's functions
similar to those introduced by Martin and Schwinger.(l) We shall show
that the Green's functions for an inhomogeneous system satisfy the same
differential equations as those for a homogeneous system, and that the
spatial inhomogeneity is generated by appropriate spatial boundary con-
ditions. In particular, we will obtain the boundary conditions for a semi-
infinite volume of material with a single plane surface and present
numerical solutions for this geometry using two methods, the Hartree-
Fock and the Puff-Martin(2 approximations.

The most important property of nuclei which must be reflected by
nuclear matter is saturation. Although the nucleus is a system of particles
bound by interparticle attraction, the system does not collapse as the num-
ber of particles increases. Specifically, the energy per particle and the
density of the nucleus (when the effects of Coulomb repulsion are dis-
counted) tend to constant limits for large numbers of particles. This implies
that an individual nucleon feels only the potential produced by its close
neighbors, i.e., that the interparticle potential is short-ranged, and that
some mechanism, such as arising from a repulsive core or exchange effects,
prevents the nucleons from packing too closely as the number of particles
increases.

This situation is illustrated quantitatively by the Weizsicker semi-
empirical mass formula, which expresses the binding energy of nuclei by
a constant binding energy per particle of -15.75 Mev, 8) modified by terms
describing Coulomb repulsion, surface effects, and symmetry energy. One
would expect this formula, with the Coulomb term dropped, to describe
nuclear matter as well. Similarly, the density of nuclear matter should be
qualitatively equal (but somewhat larger since there is no Coulomb repulsion)
to the density of large nuclei. Such a situation should also hold for such
parameters as the optical potential.



In actually solving the equations which describe nuclear matter, the
simplest approximation, which neglects all correlation effects, is the
Hartree-Fock approximation. In Chapter II we give a general derivation
of this approximation in terms of the Green's-function formalism and de-
scribe its solution for homogeneous matter. Chapter III gives the corre-
sponding solution for inhomogeneous matter with a plane surface.

In the Hartree approximation each nucleon moves in an effective
potential due to the remaining particles, which is expressed as a folding
integral of the interparticle potential and the spectral function of the sys-
tem (which is, in turn, the product of one-particle wave functions integrated
over the degeneracy variable). In the homogeneous case the particles fill
a spherical region in momentum space bounded by the Fermi momentum.
The principal shortcoming of the approximation is its inability to deal with
a repulsive core in the interparticle potential. As a result, saturation
must be induced purely by exchange effects, and the resulting system has a
binding energy per particle which is only about one-fourth of the Weizsicker
value. For the inhomogeneous case the surface (i.e., the density across
the surface) is illustrated in Figure 3.

To overcome the shortcomings of the Hartree method, an approxima-
tion must be used which takes into account sufficient correlation effects to
allow the use of repulsive cores. In Chapters IV and V we describe the
homogeneous and inhomogeneous solutions for an approximation of this type,
which was developed by P. C. Martin and originally applied to the homo-
geneous case by R. D. Puff,(2) and which gives excellent agreement with the
Weizsdcker binding energy.

This approximation, which we call the Puff-Martin approximation,
leads to an energy-dependent effective potential which is a folding integral
of the two-particle scattering matrix and the spectral function. In the
homogeneous case the particles still occupy a region of momentum space
with a sharp cut-off at the Fermi momentum, but the energy dependence of
the effective potential leads to a reduction of the density within this region,
so that the Fermi momentum for a given total density is greater in this
approximation than in the Hartree case. The resulting density across the
surface in the inhomogeneous case is given in Figure 16.

It should be noted that the calculations for the Puff-Martin approxi-
mation, which are discussed in Chapters IV and V, have been reported
elsewhere by R. D. Puff and the present author.(3,4 Our present purpose
is to give a more detailed account of the derivations and numerical tech-
niques involved in these calculations.

I.2. The Many-particle Green's Functions

The properties of a many-particle system such as nuclear matter
are conveniently expressed by a set of field correlation functions or Green's



functions, which are the expectation values of time-ordered products of
the field operators of the system. In this section we define these Green's
functions, obtain the differential equations and boundary conditions which
they must satisfy, and show how the ground state properties of a system
may be extracted from the Green's functions. A more extensive discus-
sion of these derivations is given in Reference 1.

The nuclear particles are described by field operators Y rt),
where the discrete variable { describes spin and isotopic spin. In most
of our derivations we will omit any explicit mention of the {-variable by
using the convention that the variable r actually represents both { and r.

To further simplify our equations we assume a system of units in which
7= 1.

Since the nucleons are Fermi-Dirac particles, the field operators
for equal times obey the anticommutation relations

U(rit) Y(rat) +9(r,t) ¥(rgt) = 0
¥ (at) 9eat) + 9Tet) v = o (1.1)
P (ryt) ¢+(1‘zt) i 7¢’+(rzt) Yl(rit) = 6(ry-rp)

The time development of the 7's is determined by a generalized
Hamiltonian

H=H-uN |, (1.2)

where H is the usual Hamiltonian

2

"= - f (ar) ¥*(xt) —Vi—:lw(rt) +3 f (dry)(dr,)(dry)(dr;) 97 (xat) 97 (rat)

X <r1rzlvlriré)?[/(rz't)d/(r;t) » (1.3)
N is the number operator

N = [(ar) et ple) (1.4)

and u is a numerical parameter which may be identified with the thermo-
dynamic chemical potential. The additional term -uN in the generalized
Hamiltonian is equivalent to the presence of a constant external potential
and merely introduces a constant phase factor in the field operators. We
have introduced this term in order to produce an eventual simplification
of the boundary conditions on the Green's functions.
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The equation of motion for the field operators is i 5 Y= YH-HY,
which has the explicit form

[i %w ¥ V—,E,]wr,t) - f(drz)(dri)(dr;) Vieat) <ram [v [ s> pleat) 9lest) = 0 (1.5)

We now define a set of n-particle Green's operators G, by

Gylratrerytys ritiert)) = (<)% eltrentys thoetd) (Wrst))eo. Wrpty) PHene). ¥Hegty) . - (1.6)

The symbol ( )+ indicates a time-ordering of the field operators with the
earliest time to the right. The quantity € is the antisymmetric function
(-1)P, where p is the number of permutations necessary to convert the
time-ordered sequence of t's into the standard sequence t;...tn; tI;...t'l.
The presence of €, along with the anticommutation relationls (1.'1), removes
the time-ordering'discontinuities at the points tj = tj and t; = tj, but not
at the points t; = tj‘
A set of coupled differential equations for the Green's operators
may be obtained by differentiating (1.6) with respect to t, and applying
(1.5). A set of delta-function terms arises from the discontinuities as t)
crosses each of the tJ!. The resulting equations are

oo - Cond ( B0 05 i o
5o A = G, (rtyeorpt 5 rltl...rntn) i (drnﬂ)(drl)(drnﬂ) o |v ,?,fnﬂ)

it - (] " + _
Gn+1 (rlt,rztz...rntnrnﬂtl; rltl..‘rntnrnﬂtl) =

A j'L ' 1
1 (rmr) 8(ta-t]) Gy (xptyenrpty s r;t,‘.“r;_ltj_]rj+ltj+l,,,r;ltr'l) , ()

Mo

o
[l

where Gy = 1.

The Green's functions are simply expectation values of the Green's
operators:

G, <G

n function - <“p operator” i (1.8)
'I“he differential equations (1.7) will hold as written for the Green's func-

tions providing that the expectation value is normalized so that G, = <1> = 1.
To complete the specification of the Green's func

! tions we make the particu-
lar choice of the expectation value

. Trx o (H-LN)T NZE e"(E'“N)TZ\’NEv x| NEv>
% = —— N iy
Tr ¢ (H-uN)T Z
e

) 159
i(E-,uN)TZl ( )
9



where N, E, and vy are the eigenvalues of the number operator, energy,
and degeneracy variables, respectively, and where the number T has a
negative imaginary part to produce convergence.

The advantage of this particular choice of the expectation value
lies in the simple boundary conditions which result from the cyclical
properties of the trace. For example, suppose T is real (with an infini-
tesimal negative imaginary part), and all the variables t; and ti' are within
the range 0 to 7. Then consider G, for t; = 0:

e L e
Gn(rIOrztz...rntn; rltl.‘.rntn) = (-i)” e(0t,...t; tn..‘t,)

g [ #T(tr ta)... 9lentn) ¥ Gept)- ¥ (ritd)), ¥(10)]

Tr e-iH'r

(1.10)

and for t; = T,

G, (rifrsts oty rtgerit) = (<)% etz by theot)
Tr [T y(ry) (9lrata)- Vlentn) ¥ (i) ¥ (ritd) ]
Tr e~ T

x

(1.11)

The cyclical property of the trace allows us to move %(r, 0) in (1.10) to the
left end of the expression in square brackets. Then, by using the integral
equation of motion:

Yry 7) = e Ty(r, 0) e AT | (1.12)

we may show that

: 1
e SOl [t tgrnt) s 3h)
Gn (r,-rrztl...rntn; rltl,_,rnt )= ——2_ 10

Tgths iy
(el Eopelos s il s o e e
S T P s g

= -Gp(r,0rstpeer b5 Tt Tl t)) (@)

since 2n-1 permutations are required to carry the numerator of €/€ into
the denominator. A similar boundary condition holds for each of the time
variables t; and t{ .

To make use of these Green's functions, we must be able to extract
the expectation values for a given energy and number of particles (averaged
over the degeneracy variable) from the weighted sum in (1.9). A detailed
discussion of this procedure for arbitrary values of E is given by Martin
and Schwinger. 1) In dealing with nuclear matter, however, we are only
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interested in the ground states E = Eo(N) (where Eg is the lowest energy
level of a system of N particles), and for these states the extraction is
straightforward.

We need only take the limit of (1.9) as iT -« (thermodynamically,
this corresponds to zero temperature). The sum in (1.9) then reduces to
the desired expectation value

<X> Average

iT—>o00

.14
over <NoEo(No) v |X| NoEo(Np) v> (1.14)

where Nj is the value of N for which the function Eo(N) - uN is a minimum.
Thus, to obtain ground-state expectation values we must first obtain formal
expressions for the Green's functions which incorporate the boundary con-
ditions and then take the limit as iT— «, adjusting u to give the desired
value of Ny.

The number of particles, Ny, is a function of pu which is determined
by minimizing the function Ey(N) - uN. For a system of macroscopic size
we may treat N as a continuous variable and minimize this function by
setting its derivative at N = Nj equal to zero, obtaining

dE
L= d_No (1.15)
N=No
For this point to be a minimum we must also have
d? d’E
an? [Eo(M) - uN] = de >0 . (1.16)
N=N, N=Nj

Actually, this is an oversimplification. The function Eo(N) - yuN may
have one or more local minima which satisfy (1.15) and (1.16), and the values
of the function at these points may or may not be less than the value
Eo(N) - uN = 0 at the end point N = 0. Furthermore, the true minimum N
may jump discontinuously from one local minimum to another or to the endo
point as u is varied.

We limit ourselves to the case of a single local minimum. For large
U, the true minimum Ny() will be the local minimum and will satisfy (1.15g)
and (1.16), but for sufficiently negative u the true minimum will be the end
point No(u) = 0. Let N_y i Kcrit be the point at which the local minimum
ceases to be the true minimum. This point satisfies (1.15). In addition,

Eo(N) - uN
~ Ferit
et

Z T
=
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must have the same value as it has for N = 0:

Eo(N

Thus, this point is determined by

_ dE,
craf dN

" =

crit

Eo(N

crit) = PeritNerit = Eo(N) - uN =0 7, (1.17)

N=0

(1.18)

and No(#) will be discontinuous at this point if N iy > 0. It will turn out
that the existence of this discontinuity is a necessary condition for

saturation.

The following diagram illustrates the two cases of continuous and

discontinuous No(u):

Continuous Case
(no saturation)

”critN\

—»\

crit (=0)

Ny

N =N,

Discontinuous Case

(saturation)
N
\
\
N O\Ed ™)
N\
rucritN)\
(1.19)
| N
d’E
2o 4N
i Nerit /
‘ A N
N ' ' °
N\
oyl eioy
e e == licrit
TR
dE, | |
region lregion| region
3 Pz | 1
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In region 1 of the figure for the discontinuous case the local extremum is
the true minimum, in region 2 it is a local minimum but not the true mini-

mum, and in region 3 it is a local maximum.

The actual solution of the Green's-function equations will not
explicitly exhibit a discontinuity of this sort. Instead, the equations will
possess two distinct solutions (within a region of [ containing the point of
discontinuity): an ordinary finite-density solution for which p = dEo/dN,

and an extraordinary vacuum solution for N = 0.  The discontinuity must

be imposed by switching from the ordinary to the extraordinary solutio.n
at U = U.pi;- In practice, one normally considers only vvalue‘s f)f M which
are larger or equal to U_,.;;» and the extraordinary solution is ignored.
However, an explicit consideration of this discontinuity will be necessary
to justify our derivation of the equations for inhomogeneous matter.

The extraordinary vacuum solution is simply <N = 0 [Ferd SN =R0>
It is useful to note that the one-particle vacuum Green's function G, is
independent of the interparticle potential and is equal to the analogous
function for free particles. This results from the fact that for n = 1 the
vacuum expectation value of the potential term in (1.7) vanishes because
of the particular time-order of the field operators, which places an
annihilation operator to the right.

We finally consider the conditions for which the system will
exhibit saturation. The term saturation actually implies two properties:
1) The system is self-bound, i.e., it has a nonzero density when the pres-
sure on the system is zero. (It is at the point of zero pressure or
"zero point" that we wish to evaluate the properties of nuclear matter.)

2) The system does not collapse, i.e., the energy of a constant number of
particles does not decrease indefinitely as the volume of the system
decreases.

Both of these conditions involve the dependence of the system on
its volume. We have implicitly assumed that our system is bounded by a
macroscopic box of volume V, which is sufficiently large to allow surface
effects at the walls to be neglected. For such a system it is useful to
define the particle and energy densities

o= No/Ve =l EJ/V (1.20)
and we may assume that the energy density depends on the volume only

through the particle density, i.e., € = €(p). Furthermore (for the ordinary
solution),

de(p)
pr : (TR




With the use of the function e(p) the energy may be written as an explicit
function of the number of particles and the volume:

Eo = Ve(No/V) . (1022)

From this equation we may obtain an expression for the pressure
by using the thermodynamic definition of pressure as the negative rate of
change of the energy of the system with respect to its volume, with the
number of particles held constant. This gives

OE de

or, by means of (1.21),
= (1.24)

From this we see that the zero-pressure point is just the point Ny = Nc,i¢,
H = Kcrits and the first requirement for saturation, that the density be
nonzero at this point, is equivalent to requiring that No(u) or p(u) be dis-
continuous at this point.

The second requirement is that (1.22) must not decrease indefinitely
as V - 0. This will not occur if e(p) increases at least linearly as p— »,
which is equivalent to

lim de _ lim
S50 R0 (1.25

I.3. Inhomogeneous-case Methods

Since the generalized Hamiltonian (1.2) and the weight factor
e'i(H'p'N)T in (1.9) are translationally invariant operators, the Green's
functions defined in Section I.2 are spatially homogeneous functions and
are only capable of describing infinite homogeneous matter. In general,
we will refer to a function of one or more spatial variables as "spatially
homogeneous" if it is unchanged when all of its spatial variables are
changed by an equal amount. This is equivalent to saying that it depends
only upon the differences of its spatial variables.

In this section we wish to generalize the Green's functions so that
they may be applied to inhomogeneous systems. The most straightforward
method of doing this is to introduce an external potential Vext(r), which
appears in the Hamiltonian as an additional term:

H = f(dr)vex (r) ¥H(ct) glrt) . (1.26)

ext i
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The introduction of this potential modifies the differential equations for the
Green's functions by changing the differential operator in the first line of
(1.7) to

5 vi 127
I:l BTI"',U' Vext(r1)+2~m] L ( )

In order to examine the surface of nuclear matter, we may localize
the matter by introducing a potential well, or, equivalently, a potential
barrier. Furthermeore, if we choose j = l.pit tO give zero pressure and
the well has macroécopic dimensions, we would expect an infinitesimal
potential to be sufficient to produce the localization, since there will be no
back pressure against the well and since a macroscopic well will have an
infinitesimal zero-point energy. On the other hand, such an infinitesimal
well would not have any distorting effect on the structure of the nuclear
surface.

Torealize this situation mathematically we introduce a sharp-edged,
infinitesimal well in the macroscopic region Ry, by using the external
potential

-€, if T in R,
v t(r) = (1.28)
S &, (i a0 et iadg 5

where € is positive. The effects of such a potential may be inferred
directly from (1.27). Since V .(r) is additive to K =lerits the local prop-
erties of the system, at macroscopic distances from the surface of Ry, will
be the same as the properties of a homogeneous system for U = Ucpit T €
inside the well, and 4 = lcyit - € outside the well.

The ability of this infinitesimal well to localize the system stems
mathematically from the discontinuity of p(u) at K = K critp Which occurs
for a saturated system. Inside the well, for K = Hcrit T € we have matter

at the zero-pressure density p = Ncrit/V’ whereas outside the well, for
K = Perit - € We have a vacuum: p = 0.

The essence of this procedure is that the external potential, being
infinitesimal, is a purely formal entity which need not be ins

erted explic-
itly into the Green's-function equations.

The inhomogeneous-case Green's
functions satisfy the same equations as the homogeneous functions. The
only change is that the condition of spatial homogeneity must be replaced
by spatial boundary conditions which specify that the local properties of
the system approach the Properties of saturated h
inside the region Ry and approach the pro
These local properties include the Green'

omogeneous matter
perties of the vacuum outside R,.
: : s functions G, themselves, which
;(,_1:13 i_(?_c.a_‘,_l f;ip:ft.:ﬁs_fi;:;l_ew average spatial coordinate R = (I/Zn)



The simplest possible inhomogeneous geometry is that of a single
plane surface of matter localized by choosing R, to be the half-space
Z > 0. In this case, the local properties of the system are spatially in-
homogeneous only along the Z-axis, approaching the properties of homo-
geneous matter as z—~+ © and of the vacuum as z— - «. In the following
chapters we will obtain solutions for inhomogeneous nuclear matter (in
the Hartree-Fock and Puff-Martin approximations) in this semi-infinite
geometry.

15
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CHAPTER II

THE HARTREE-FOCK APPROXIMATION IN THE HOMOGENEOUS CASE

II.1. General Derivation

In Chapters II and III we derive the uncorrelated or Hartree-Fock
approximation and obtain solutions for both the homogeneous and inhomo-
geneous cases. We refer to this as the Hartree-Fock approximation by
analogy with the case of atomic systems, in which it leads to the conven-
tional Hartree-Fock equations for the one-particle wave functions. Al-
though this approximation is known to be severely inadequate for dealing
with nuclear matter, it will be useful to develop its consequences, par-
ticularly in the inhomogeneous case, as a preliminary to investigating

correlation effects.

The Green's function G, satisfies the differential equation

V2
[i% e _1:| Gylr ty; ith) + if(drz)(dr{')(dré) <ryrplvlei'ry> Golry'tirpty; ritir,ti) =
2m
&(ry - r1)é(t, - ty) ,

(2.1)
along with the appropriate periodic boundary conditions in time. In the
Hartree-Fock approximation we neglect all correlation effects and replace

G, by a product of Gs, arranged to give the appropriate antisymmetry:

. 1 { I ; ~
Ga(ritraty; Tityr,t,) = Gi(rity; rity) Gy(raty; rat3) - Gy(rgty; raty) Gi(r,ty; rity)

(2.2)
The substitution of (2.2) into (2.1) then yields
) vi 0.4 " " '
l:l N ir U ﬁi’Gl(rltl; rity) - f (dry') V(r;ry) Gy(ri'ty; r1ty) = 6 (ry - )5 (ty ‘tl') ,
where (2'3)
V(riry) = -if(dr,)(dry) [<rirafvlrirs> - <riralvirie>] Gilratys o)
(2.4)

At this point it is necessar
of the spin and isotopic s
the space coordinates.

: : Yy to examine the explicit consequences
pin variables which have been compressed into
We assume that the Hamiltonian of the system

and isotopic spin and i ic i
. . S symmet
variables, i.e., that there is no spin- . it

effects. Now G, is a sum of diagonal

< '(¢(C1r1t1)?//+(C1'r1'tf)) +|>- The conservation of the

S 6 R f- €-variables implies

1 Yince
€. In addition, from the definition of G, in terms of
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Tr (Y€ ity)yt (Eyaty) )4» we can see that the symmetry of the Hamiltonian
implies that G, is independent of £; when {; = ;. These results allow us
to factor out the {-dependence:

G(&yr1ty; Cl'rl'tl'): o¢.t; Gylziti; Tty : (2.5)

By substituting this into (2.3) and (2.4) we find that (2.3) holds as
written for the new G;, whereas (2.4) becomes

V(ryry) = V(Clerﬂ';)

:"if(drz)(drz') [z <<C11‘1Czr2 }Vlﬁlrigzré> - <Giri8ere "’l Czrz'clrb)jl

2
x Gzt estin) e (2.6)
We assume that the interparticle potential is a sum of products of spatial

functions and the possible combinations of the spin exchange operator PO
and the isotopic-spin exchange operator P7:

<Girilera M 111lzT2 > = <11, [ol rir; > <8ite i itz >
+<rrgvglrire> <182 [POE1L2> + <riralvy 1‘1|1'zI > <t [PT[C1L2 >
+ <y Vgl Tira > <GGIPOPT iG> (2.7)
Let j be the spin coordinate and k the isotopic spin coordinate. Then
<irkuzke P9 |jikijzke > = 65 31 85,50 Okl Oy
<iikajzke [PT] jikiizka> = 6,51 83,55 Okyky Okpky (2.8)
If we substitute this into (2.7) and the result into (2.6), we obtain

V(ryry) = -i[(dra)(dry) [<riralv|rirs> - <rire Vexlrari> ] Ga(rati ratf)

where
< |v[>= 4< Ivo| >t 2< [vg|> + 2 < vq> +<|vgr | >

<

IVexl > = < [vo| > + 2< |vg|> + < |vr D+ 4< {vgr > (2.10)

The Green's function G, is now specified by equations (2.3), (2.9),
(2.10), and the time boundary conditions. These equations may be re-
written in a manner which incorporates the boundary conditions by ex-
pressing G; in a spectral form. Consider the functions G> and G<, de-
fined analogously to G; but without the time ordering:



Gy (et xt) = T<HEOP (r2)>

>

Gelrts xie) = -4 <Pyl > (2.11)

Both G _ and G, satisfy an equation similar to (2.3) but without the in-
homogeneous delta-function term which arose from the time-ordering
discontinuity. The Green's function G; may be expressed in terms of

these functions as

Wy - [Gy(tirt) 5 t>t
E5fltn b)) = {G<(rt; 't St y (2E12)

Now, the considerations which lead to the boundary conditions on
G, show that

Gy 1) = = G (rtt+7; 't!) : (2818

These functions depend only upon the time difference t - t'. If we introduce
their Fourier transforms in this variable,(5)

G>,<(rt; r't') = f Zd?d; e-i(w'#)(t-t')g>’<(rrnw) - (2.14)
-0

we find by transforming (2.13) that g S and g are proportional:

(rr'0) = -e HO-MT g (rrig) . (2.15)

B
Because of this proportionality relationship, which is equivalent to the
original boundary conditions on G;, we may introduce a single function
A(rr'w), called the spectral function, such that

e = A(rr'w) : : 3 -A(rr' )
g (rr'w) S g (rrw) = MT‘:)T ; (2.16)

By substituting this into (2.14) and the result into (2.12), we find(5)

A(rr'e) o
ety = L (40 iw- py(e-tnd 1+e-il@-p)r
SR ierr e ; ;e(rr.w) - i (2.17)

1+ell@w-p)T

The functions g and 8¢ both must satisfy the Fourier transform
of the homoger.leous equation corresponding to (2.3). Since A is proportional
to g> and g it also satisfies this equation:
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2
[“”zv_ri.]%lriw) i f (@rf) V(e A rio) = 0 . (2.18)

[The purpose of writing the transformed variable in (2.14) as w-y was to
eliminate y from (2.18).]

The form of the inhomogeneous term in (2.3) places a condition
on A. If we integrate (2.3) over time across the delta function and
substitute (2.17), we find

fg—(#A(rr'a)) =sio(e =) o (2.19)

Equation (2.18) has the form of a nonlocal Schroedinger equation,
and it possesses wave-function solutions ¥ (0{r), where £ are the constants
of motion necessary to remove degeneracy. We may interpret V as the
effective potential on a single particle due to the remaining particles, and
the ¥'s as the single-particle wave functions. In terms of the y¥'s the
function A may be expressed as

Alrr'e) = Y Urlwly* (r'tw) (2.20)
e

(where the summation over { may actually be an integration). Equation
(2.19) becomes the completeness relation

S8 D et Wy (r'tw) = B(r-xY) (2.21)
;

which specifies the normalization of the wave functions. Such a decom-
position will be necessary in the solution of the inhomogeneous case, but
the homogeneous case may be treated more directly by Fourier
transformation.

To complete the replacement of G; by A, we substitute (2.17) into
(2.9), obtaining

o '
1 1 1 Tt dw A
V(rlrl) =f(drz)(drz) [<1‘11‘z|V|1'11'z> - <mir IVexlrzr1>] f Zﬂ.%

-0
(2.22)
In the low-temperature limit, i7 - wand
: N ) wheren-(@-p) = { 1 2K
e e - wher - - =
1+eil@-p)T X Fc # L e (2.23)
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so that (2.22) reduces to

\ i 0 ot B dw '
V(rry) :f(dl‘z)(drz) [<r1rz[v|r1r2>—<r1r2|vex|r2r1>]f ﬁA(rzrzw)

P (2.24)
Now the matrix elements of v and vgy may be written as

r1+ I, r'+r'
<ryra|v|rirs> = 5(—2——— 12 2)v(ry -1z, 11 - 15) (2.25)

(similarly for vex)

In our further work with the Hartree approximation we will limit ourselves

to a local interparticle potential. In this case,
<ryrg|viriry> = &(ry - )6 (rp - 13) v(r; - 12) (2.26)
(similarly for vey)

and (2.24) reduces to

1 f i
V(ryry) = 8(r; - rl)f(drz) v(ry- ) { :" %{A(rzrzw)}
1 Hd(l) [
-Vey(ry - 7)) [ ZTA(rlrlw) . (2.27)

The bracketed term may be identified with the density p(r;),
since this quantity is

pr) = <p(r)> =< P (x(x)> = %Gl(rt; rtt) . (2.28)

Substitution of (2.17) and (2.23) gives

"
plr) = f %—A(rrw) : (2.29)

0

Mc?re pre.cisely, this function is p(£r), the density of particles of a given
spin a'md isotopic spin. The total density is 4p(r). Equation (2.27) now
permljcs a further interpretation of V as the effective potential. The first
term is a local potential given by the convolution of the interparticle po-

tential with the density; the second is a nonlocal term arising from
exchange effects.



In addition to the particle density, we may obtain the energy density.
The total energy is

E'= <H>»

< -f(dr)wr) %wm + %f(dr,)(drz)(drmdr;)w*(r,)w*(rz)«,rz bl ziza > (r2)¥(x0) >

i v2 \ . Vo |
E 'if(dl‘) Hm ( —> Gy(rt; r'tt) - —; f(drl)(drz)(drl)(drz) <ryrp |v] rire> Golrytrats rttrot®)

r'=r \ 2m
(2.30)
The use of (2.1) to remove G, gives
e o @y [ii + -lz]c (rt; r't') (2.31)
2 t' - tt ot K 2m S )
et

Since this is an integral over space, the energy density (E/V in the homo-
geneous case) is

g lim ) v?
e(r) = -lZ- > 1 [1a—t-+ m _2;] Gy(rt; ='t") : (2.32)
e S 5

The substitution of (2.17) and (2.23) reduces this to

K dw lim Z

Again, this is actually €({r), and the total energy density is 4€(r).

Our system is now described by the spectral function A and the
effective potential V, which are determined as functions of i by equations
(2.18), (2.19), (2.27), and (2.10). The value of U for free nuclear matter,
i.e., for zero pressure, is obtained by solving €=U p, with p and € given
by (2.29) and (2.33).

II.2. The Homogeneous Case

In the homogeneous case, A and V depend on the difference of the
spatial coordinates, r - r'. Therefore, it is useful to introduce their
spatial Fourier transforms:

Alrr'w) =/(—(;7T%))— eip(r-1A(pw) (2.34)

and
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V(rr') = (&2%%25 eip-(r = rl)V(p) . (2_35)

In terms of these transforms, (2.18) becomes

2m

[w- BZ_ z V(p)] Alpw) = 0 X (2.36)
(2.19) becomes
g ¢ 2,37
f—Z? Alpg =1 220
and (2.27) becomes
1 # d
V(p) = E—%’;)—Z [v(pzo) = vex(p—p')] Iw {—#—A(p'w) , (2.38)

where v(p) and vex(p) are the transforms of the interparticle potentials:

v(r) :[((;7%)3 P Ty(p) (similarly for vey) e (2:39)

Now, (2.36) and (2.37) have the solution

Alpw) = 2m8[w-h(p)] (2.40)

where

2
h(p) = 'sz V() S (2.41)

By substituting this result into (2.38), we obtain

N

—

vie) = [ G2) [v0) - vextp-p)] (2.42)
P

where ['is the region of momentum space where L - h(p) > 0, i.e., the
Fermi region. It is simplest to assume that I" is a sphere, and we will

find that this assumption leads to consistent solutions. Let ps be the

radius of this sphere, i.e., the Fermi momentum. Then, (2.42) becomes

v(O)p% dp'
V(p) = T (22)3 Vex(P-p') : (2.43)

[P'| < Pt



The value of pg is determined by the relation u- h(p) = 0 on the surface
(ot B L

pf p;  v(0)pg (dp")
Aesleim o Ve Tt e (@ Vex(Pg-P')
' <,

(2.44)

At this point we may infer the conditions which are necessary to
give saturation in the Hartree-Fock approximation. Saturation will occur
only if the limit of U, as P> or equivalently as p, - «, is larger or equal
to zero. From (2.44) we can see that this will occur if and only if

v(p=0) = f(dr) v(r)= 0 ; (2.45)

i.e., the nonexchange portion of the interparticle potential must be repulsive.

Of course, inorder for the system to be bound at all, the exchange portion of
the potential must be sufficiently attractive to compensate for this repulsion
and give a negative value to p at the saturation density. Our choice of signs
is such that v, must be positive to give such an attraction.

We see here that the Hartree-Fock approximation cannot account
for saturation by means of a repulsive core, but must rely upon an exchange
effect. Except for the exchange term, the effective potential depends only
on a single characteristic of the interparticle potential, the integral | (dr)
v(r), so that if the exchange term were neglible, we would face the dilemma
that this quantity should be negative to give binding but positive to give
saturation.

The actual value of u for free nuclear matter is determined by the
requirement that the pressure be zero, which leads to the relation € =y p.
To obtain expressions for the particle and energy densities p and €, we use
(2.34), (2.35), and (2.40) to rewrite (2.29) as

(dp)  P§

p = (?)3 = (m—z : (2.46)

and (2.33) as

23
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—

(dp) 2 5
= AL p_] - EECRE (dp)
E Z/I;I - 217)3 [h(p) o= 20m2m Zﬁkpf(m)} V(p)

Pt 1 (_‘ilﬂ (dp')
) 20mm ’ —Z—/ (Zﬂ)zf (2m)? [V(O)_Vex(P'P')]
|p| < pg [p'|< pt

Substituting (2.46) and (2.47) into €={p, we obtain

; (dp) (dp")

3 5
Pf Pf 1 B
e = e i = Vo (P-P')
H6712 20m2m L v(o) 367 Z‘/ (Zﬂ)s‘/ (2m3? o p-p')
|p|<Ps |pY< pg (2.48)

equations (2.44) and (2.48) are simultaneous equations determining yu and
ps- Once p_ has been determined, the effective potential is given by (2.43),
and the function A by (2.40) and (2.41).

The solution of these equations has been carried out for a case
where v and v, are Gaussian potentials with the same range:

vi(r) XY e v(p) i
{ }:_{ }e- r ; e = 5 a2
Vex(r) Xex Vex(p) & >\'ex

The choice of Gaussian functions was made in order to simplify certain
integrations appearing in the inhomogeneous case. In any event, one

would not expect the result to be very sensitive to the choice of potential
shape.

Using (2.44), (2.48), and (2.49), we obtain an equation for the
variable u = pf/oc )

adfr P L Mex 1 ST R
T 5 6 -e Tz u - = ute =0 . (2:50)
The value of the chemical potential is determined by

2
25V e A ex
2m o /7 um

A
e
[l Ne gt it = erf(u)

5 ; (2.51)



where

ru:L et
i) ﬁfo e (2.52)

is the conventional definition of the error function. Finally, equation (2.43)
for the effective potential becomes

, [ /pe-p\®  (pe+p)’
7]—3/2 Pf a > } = 0
by = a e

Vv = a— e
(P) o o1 ,_Trp >\ex
i P i i i (2.53)
TS 2a 20. ’ 3

The parameters )\, Aoy, and a appearing in (2.49) may be determined
by fitting the interparticle potentials to low-energy two-nucleon scattering
data and the ground state of the deuteron. Feshbach and Loman(6) give the
following values for the scattering length and effective range for triplet
and singlet scattering:

atg 5.39 £ 0.03 fermis

PR (S 000 3 fe rrais

Ay = -23.7 £ 0.1 fermis

rg = 2.7 £ 0.5 fermis . (2.54)
Blatt and Jackson(7) have computed a set of formulas and graphs for
fitting the depth and range of various potential functions to values of a

and r. Normally, the quantities in (2.54) would determine four independent
parameters, the depth and range of the triplet and singlet potentials.
However, the experimental deviation of rg is sufficiently great that it is
possible to set the triplet and singlet potential ranges equal and still fit
the data in (2.54) to within the stated accuracy. When this simplifying
assumption is made, the application of Blatt and Jackson's fitting pro-
cedure, using a Gaussian potential, gives

v = vtPt VPSR D PEED. PET e-afr? (2..55)
where

0.669 fermi~! ;

Q
1

At = 70.67 Mev b
46.29 Mev ; (2.56)

>
[
1



and P! and P° are the projection operators for the triplet and singlet spin
states:

pie = AL =L ey (2.57)

L
2 2

The interparticle potential is still not completely determined,
however. The data in (2.54) describe S-wave scattering, and therefore
will still be fitted correctly if (2.55) is multipled by the space-exchange
operator Pex. More generally, we can replace (2.55) by

v = [wP +t v PE] [L-1tnB..] . . (2.58)

where 7 is an arbitrary constant. Thus, we have the option of specifying
an arbitrary admixture of space exchange in the interparticle potential.

For Fermi-Dirac statistics, the three exchange operators satisfy
BN -P9PT. The substitution of this relation and (2.57) into (2.58) gives

Ritsiis iR S )
W ['T i+ Z—P] [1 =} -T)POPT] . (259)

The spin-exchange operator satisfies P92 = 1. If we use this relation to
expand (2.59) and compare the result with (2.7) and (2.10), we obtain

9 1
v = 3vt+vs-—2nvt__2 nvg -
= 3 1 1
Ve T s S gy Vs o %Qvt Vs ) (2.60)

where both v and vg are attractive.

Now our choice of 7)is restricted by the requirement that v = 0
in order to give saturation. This leads to

bvy + 2vg

n e vt + Vs v (261)

By substituting the values of (2.56), we obtain i = LTS

Two values of 7) are of special interest: (1) =1 6y
minimum amount of space exchange necessary to produce
(ii)n = 1, which gives a pure space-exchange potential.
the parameters in (2.49) are

which gives the
Ssaturation; and
For these cases,

Case (i): Case (ii):
A =0 N = -82.86 Mev
ex = -175.44 Mev hex = -258.20000

a 0.669 fermi~! a =

0.669 fermi-1 (2.62)
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The remaining parameter in our equations is the mass. We have
been using a system of units in which #Z = 1, and have chosen our inde-
pendent units as Mev's and fermis. In this system the average nucleon
mass is m = 0.0241141 + 0.0000017 Mev~! fermi %, or l/?_m =2 ONT 3L TN
0.0015 Mev-fermi®.

Equation (2.50) was solved numerically to give the Fermi momentum
for the two cases in (2.62). This equation has two roots:

Case (i): Case (ii):

0.34268 -1 0.38833 7!
Pf = Pf = ;

12022601 0.65662 f71 | (2.63)
The corresponding values of , given by (2.51), are

Case (i): Case (ii):

0.4349 Mev 0.4866 Mev
= M=

-3.6284 Mev 0.2982 Mev : (2.64)

In both cases the first root gives a positive value for the binding energy
E/N = i, and this solution can be considered nonphysical. In case (ii),
however, even the second root gives a positive binding energy. We must
assume, therefore, that a pure exchange force cannot yield a bound sys-
tem (at least in the Hartree approximation), and that only a limited range
of the parameter 7) leads to a physically acceptable result.

Fortunately, the second root in case (i) yields a bound system.
For this case, the effective potential was calculated from (2.53), which
gave the results tabulated in Table I and shown in Figure 1. One further
quantity of interest is the density; equation (2.29) gives p = 0.03087 =3
(which must be multiplied by a degeneracy factor of four), which corre-
sponds to an interparticle spacing constant of r, = [3/(167Tp) ]‘/3 = 1.25 fermi.
The important results of the calculation are summarized in Table II.

Table I. EFFECTIVE POTENTIAL FOR HOMOGENEOUS
NUCLEAR MATTER IN THE HARTREE-FOCK

APPROXIMATION
p (f71) V(p) (Mev) o (6] V(p) (Mev)
0 -62.53 INZ25 -33.70
0.25 -61.02 b0 -25.55
0.50 =56.70 I 7ds) =55
0.75 -50.14 2.00 ~12.50
140 1(0] -42.17
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Fig. 1. Effective Potential V(p), as a function of p,
for homogeneous nuclear matter in the
Hartree -Fock approximation, using the exact
and effective-mass solutions.

A comparison of the cal-
culated value of -3.63 Mev with the
observed binding energy per par-
ticle of -15.75 Mev, obtained from
fitting nuclear masses(8) bears out
our pessimistic assumptions about
the applicability of the Hartree-
Fock approximation. On the other
hand, the calculated value rgy =
1.25 fermi is in reasonable agree-
ment with the values r, = 1.1 to
1.2 fermi obtained from high-
energy electron scattering
data,(9,10) although it is difficult
to infer the density of nuclear
matter from finite nuclei because
of Coulomb repulsion effects.
Although one could perhaps im-
prove these results slightly by
tinkering with the interparticle-
potential shape, it seems reason-
able to conclude that exchange-
effect saturation will not give a
sufficiently large (negative)
binding energy. If a repulsive-
core saturation mechanism is
used, however, Hartree-Fock
theory is inapplicable, and we

must include correlation effects in the approximation as in Chapters IV

and V.

Table II. PARAMETERS OF HOMOGENEOUS NUCLEAR MATTER

IN THE HARTREE-FOCK APPROXIMATION FOR THE
EXACT AND EFFECTIVE-MASS SOLUTIONS

Exact Eff. Mass
Fermi momentum py, (B 12226 1.2226
Chemical potential y, (Mev) -3.628 -3.984
Density p%, (£7°) 0.03087 0.03087
Interparticle spacing ro, (f) 1525 o5
Energy density €2, (Mev-£7?) -0.1120 -0.1230
Energy per particle e/p, (Mev) -3.628 -3:984
Vo, (Mev) -60.437
V,, (Mev-£?) 17.029

aThese quantities must be multiplied by a degeneracy factor of 4



II.3. The Effective-mass Approximation

In treating the inhomogeneous case it will be necessary to use an
effective-mass approximation. In this approximation the effective potential
is approximated by an even quadratic function of momentum. This allows
the Schroedinger equation for the one-particle wave functions to be trans-
formed into a local Schroedinger equation with a modified, spatially de-
pendent mass term. In this section we investigate the equivalent
approximation in the homogeneous case.

We approximate the effective potential by the function
Vap(p) = Vo + Vep? . (2.65)

To determine the quantities Vo and V,, we fit V__(p) to V(p) by the criteria
of least squares; Vy and V, are chosen to minimize

£= [(ap)W(E)[Vaplp) - V(O)F . (2.66)

The weight function W(p) must be chosen to give a good fit in the region of
momentum up to pg, but it must go to zero rapidly for larger momenta,
since the quadratic function V., will diverge sharply from V beyond Py szt
suitable choice is the Gaussian function

PR (2.67)

To determine V, and V, we substitute (2.65) and (2.67) into (2.66),
and then minimize £ by setting its derivatives with respect to Vy and V,
equal to zero. This gives two simultaneous linear equations for V, and V,,
which have the solution

2
R GO [ ﬁi5+§P_] vip) (2.68)

where V(p) is given by (2.43)in general, and by (2.53) for the particular
choice of interparticle potentials used in the last section. The substitution
of (2.53) leads to

29
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pf

3 5 - Lol
e Apg Phex Pt . BEPECY O T4atR S S LY o
Pedym Vnvhd B (402 +£2)° T AL
; /i
RO Lex Pf T40f + B?
Vi = -?—_—_z NED e : (2.69)
7 (4a®+ B%)

To carry out the effective-mass approximation, we simply replace
V(p) by the function Vap( p) defined by (2.65). Thus, (2.44) is replaced by

1
L= Vot <v2 i -—) pi . (250

(2.47) becomes

1 5 1 3
= —— —_— 2l
€= —am— Pf % e Vops * 207T2 Vzpf ; ( )

and up = € becomes

L 1 5

1 &) 1 5
S A e I — . Zrilie:
Bz PE™ oo Pt o Vopt * o7z VePg (2.72)

By substituting (2.70) into (2.72) we may eliminate u and obtain

T R
i B 5 2 pf . (273)

For a particular value of the weight parameter 3, the quantities
Vo, Vz, and p; are determined by the simultaneous equations (2.69) and
(2.73), and g is then given by (2.70). However, since we have already ob-
tained the exact solution, it is more useful to approach the problem in
reverse. We may set p
and (2.73) to determine i\’0, V,, and p. This procedure is justified by the
fact that V p(p) will be a least-squares fit to the exact solution for V(p)
only if Ps is the same in the exact and the effective-mass solutions.
resultmg value of B is 0.6402 7!

equal to its value in the exact case and use (2.69)

The

This computation was carried out numerically with the same data
as in the previous section.

the function V
V(p).

The results are summarized in Table II, and
ap(p) is shown in Figure 1 for comparison with the exact



CHAPTER III

THE HARTREE-FOCK APPROXIMATION
IN THE INHOMOGENEOUS CASE

III.1. - The Thomas-Fermi Approximation

Having derived the solution of the homogeneous case in the Hartree-
Fock approximation, we now investigate the inhomogeneous case. In this
section we describe briefly an approximation, analogous to the Thomas-
Fermi model in atomic physics, which may be solved by the Fourier-
transform methods used in the previous chapter. Unfortunately, it will
appear that this approximation is inapplicable to nuclear matter, at least
in the Hartree-Fock case, because of the extreme exchange nature of the
forces:

The derivation in Section II.1 applies to both the homogeneous and
inhomogeneous cases. The value of u is taken from the homogeneous cal-
culation, and A and V are determined by the simultaneous integral equa-
tions (2.18) and (2.27), along with the normalization condition (2.19) and the
interparticle-potential formulas (2.10). However, the restriction of spatial
homogeneity is now replaced by the condition that the local properties of
the system are functions of one rectilinear coordinate (taken to be the Z-
axis), which approach their values for a vacuum in one direction and their
values for homogeneous matter in the other. Mathematically, A and V
become functions of the average spatial coordinate% (z+2') as well as the
difference r-r', and they satisfy the boundary conditions

z+z'
A, Vyacuum ’ > it
AV~
z+z'
A, Vhomogeneous B i . (351)

It is useful to introduce the convention of denoting sum and differ-
ence coordinates by square brackets:

3 o) e o
F[R,r] = F<R+§ R —); F(ry, ;) = F[ ! Z,r,-rz] (B

Thus, (2.18) may be rewritten as

1. 11.= 2 2 . r! ' r-r _
[w+ZTn<zVR+VR Vr+vr>:l A[Rru_w]—f(dr)VI:R+7.r—r] A[R-—Z—,r,m] = 0 .
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and (2.27) as

H M
PR el = 6(r)f(dR')V(R'R‘)f 2_70% A[R'0 w] - vex(r)f 2—7(::) A[R r w]

- 00

(3.4)

In the Thomas-Fermi approximation we assume that A and V are
slowly varying functions of the sum coordinate R. Then we may approxi-
mate (3.3) by dropping the derivatives with respect to this coordinate and
setting all sum coordinates equal to R:

2
(u) +22m5> A[RT w) ‘f(dr') VIR, r-r']ART @] 20 . (3.5)

This is an integrodifferential equation in the difference coordinates only.
If we introduce the Fourier transforms in these coordinates,

d ip-r
AR ] :f((“‘:;s P T ARpw) (3.6)
and
_ (d ip4r
V[Rr] = f(z:))J cAP AL (REL) (3.7)

then A(R p w) is determined by the correctly normalized solution of the
transform of (3.5):

A(Rpw) = 27 &(w-h(Rp)) |, (3.8)

where

(IR )] = (pZ/Zm) + V(R p) (3.9)

The transformation of (3.4) in the difference coordinates yields

v
V(RP) :f(dR‘) V(R—-R')f S—CTL: \/\Edi))} A(R' P| LL))
e 20

_ [ (dp") A
/(z—nﬁ Vex(P‘P)f S ABRpie) (3.10)

where vey(p) is given by (2.39).

As in the infinite ca i i
e e se, the substitution of



(dp') (dp')
V(Rp) = dR') v(R-R' = Ve eDI= DY) s e
(R p) /( ) v( )fl"(R') T fr(m T P-P

where I'(R) is the region of momentum space where U - h(Rp) > 0.

Our system is restricted to a one-dimensional spatial dependence,
i.e., h(Rp), V(Rp), and I'(R) are independent of X and Y. If we define

v(Z) =f dXdY v(R) (3.12)

then (3.11) reduces to

(dp') (dp')
V(zp) = [ dZ' v(Z - 2! = Ve (P=p) «(3.13)
( P f ) fr(zl) (27_()3 fr(z) (Z7T)3 P P

We now let p¢(Z) be some point on the surface of I'(Z). This gives the re-
lation U = h(R, pf(Z)), and by substituting (3.9) and (3.13) we may obtain

2
(Z) ! 1

e pr # de' V(Z—Z')f (dpz 'f (dp_z Vex(Pf(Z)"P')
v r(z (2m r(z) (2m o

(There is a restriction on this equation. It cannot be assumed a priori
that the density goes to zero asymptotically as z - - «; instead, there may
be regions of the Z-axis for which the density is exactly zero in this ap-
proximation. In these regions I'(Z) will be empty and pg(Z) will not be
defined. Equation (3.14) applies, however, to all regions where the density
is nonzero.)

At this point the shortcomings of the Thomas-Fermi approxima-
tion are fairly apparent. Equation (3.14) must be used to relate quantities
at different points along the Z-axis, but such a relationship occurs only
through the second term on the right-hand 'side, which is proportional to
the nonexchange interparticle potential. Since this part of the potential
must be small and repulsive to give saturation, poor or even inconsistent
results can be expected.

Actually, a repulsive nonexchange potential leads to an inconsist-
ency. For a reasonably smooth potential this restriction on the nonex-
change potential implies that v(Z) is everywhere non-negative. Then the
first two terms of the right-hand side of (3.14) are positive, and we have

fr(z) (%T’—)ﬁ- vex(pg(Z)-P)> -p . (3.15)
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Since -y is positive, this equation places a lower limit on the magnitude of
the integral, and thus a lower limit on the volume of integration. But this
volume is proportional to the density p(Z), so that (3.14) has no solutions
for which p(Z) goes continuously to zero as Z - - o, as required by the
spatial boundary conditions (3.1).

This failure gives a certain amount of negative information by cast-
ing doubt on the original assumption that A and V are slowly varying func-
tions of Z. Actually, the nuclear surface in the Hartree approximation can
be assumed to be quite sharp (as it is experimentally), with a thickness of
the order of magnitude of the Fermi wavelength.

III.2. - The Wave-function Expansion Method

We now turn to the possibility of solving the inhomogeneous case
by expanding A into a set of one-particle wave functions, as in (2.20) and
(2.21). The first step is the conversion of (2.18) into a differential equa-
tion for the wave functions and the derivation of the normalization conditions.

Now, in Chapter IV we are going to need an analogous derivation
for an equation similar to (2.18) but with an energy-dependent effective
potential V(rr'w). [This is equation (4.49).] Because of this we will gen-

eralize the present derivation slightly to make the potential dependent

upon energy, and then reduce our final equations to the energy-independent
case.

Thus, (2.18) may be written in the (generalized) form(5)

2 n
I:UJ*' %} Alr r'w) -f(dr") VI: - r—Z Sl w:l A Sl siha) = @ (B )

By defining an asymmetric Fourier transform of V,

r _ (d ip:r 37
V[R_E,r,w]~ f(mf))s SRR ) (3.17)

we may rewrite (3.16) as

Ve ; (dp) = ; i
(m E) ar) - [ Z8 Y pa) [ [@rm e e ai o, w)] - 0

(3.18)

In the bracketed quantity, A(r - r", r', w)
about A(r, r', w),
tial. This gives

may be expanded in a Taylor series
and the powers of r" written as derivatives of the exponen-

f(dr") eip- 1" Al Rl R= Z r}_‘ f(dr") [— % vp. vr]n eiptnll A(rr' w) . (3A19)

n=

o
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When this is substituted into (3.18), the derivatives with respect
to p may be transferred to act on V(r p w) by integrating by parts. The
r'"-integration then acts only on the exponential, which reduces to ¢ (p) and
undoes the momentum integration. The result is

(3.20)

(o]
2z Iof n— x —
o+ Z]aerwr- T &[5 v )" T po) aGre)
n=o0

The sum is just a Taylor expansion of V(r" p w) with the powers of p re-
placed by powers of l/i Vy- This is formally equivalent to

{UJ'F v—z] A(rr'w) - v<r L a)) A(rr'w) = 0 (3.21)
2m ot S ¥ ‘

with the understanding that the derivatives act only on A rather than V
itself.

The asymmetric transform V is related to the symmetric trans-
form defined by (3.7). The substitution of (3.7) into the inverse of (3.17)
gives

V(Rpw) = f(dr)f(dp') e~ilp-p')-r V(R-%, p',u.)) (5122

(2m)?

As before, V(R - % =D a)) may be expanded in a Taylor series about

V(R, p', ), and the powers of r replaced by derivatives of the exponential.
The r-integration then yields a delta function, and (3.22) reduces to

V(Rpw) = b5 [z% vp-vR] VRpw) (3.23)

n.
L=

Because of the one-dimensional spatial variation, V(R p w) is inde-
pendent of X and Y, and A(r r' w) depends on these coordinates only
through their differences x-x' and y-y'. Thus, it is useful to introduce
a two-dimensional Fourier transform

185 it p?-y>

dp dp i )6 4 4 =
Alr ' o) _f_X_Y_elpx(x x') +ipy (y y)Apxpyzz. -

E 2y
(3.24)

which allows (3.21) to be rewritten as



2 . 1 3 Pk +p2 . (8:25)

Furthermore, because our system is invariant under rotations in the
X,Y-plane, A and V depend on px and py only through the magnitude

Pr = /p§<+p%, . (3~26)

The one-dimensional wave equation corresponding to (3.25) is
& 1D Pt
1 = r i
|:w +—_— — - V(z,pr,—i e w + E)] Y (zpprw) = 0 % (BE2T)

Consider the limits of V as z - * ». Since V approaches a constant value
in both limits, all terms in (3.23) except the first vanish. Thus, (3.1) gives

£ 13 Py g e (3.28)
Vz,pr,‘i‘g,u.+;1-—- s P2 f
Vhomogeneous Pr:T g: w+ﬁ sz > tico

As z > + », the wave function has the limit
Y(zprw) s —=c sin [kz + n(k)] (3.29)
where k satisfies

k2 b2
W= 5w 'hom (vpé“‘z’w*zm =0 e

which may be written as

2

Py
wr E:h(./p?i+k2) % (3.31)

where h(p) is the solution of

h(p) = Zp—m t Vhom (P, h(p)) . (5.32)

[We note that in the Hartree case, where V is ener

independent, this
reduces to (2.41).] = 4



Now k = 0 whenw = Vyom(pr,h(pr)), so that (3.27) will have a
solution only when w > Vhom(pr,h(py)). (We assume that V is smooth
enough that no bound states occur.) In addition, since V>0asz—>-o,
there will be a second independent solution when @ > 0. Thus the wave-
function decomposition of A is

0 ;@ < Vhom (Py, h(Pr))
Alppzz'w) =4 ¥ (z2py @) ¥*(2'pr w) i Vhom (Pr h(pr)) < @ <0 (3.33)
Yi(zpy @) ¥F(z' Py w) + Y2(zpr ) 97 (2'prw); w>0

We will need to find the wave functions only in the middle region
Vhom (Pr>h(pr)) < w < 0, and will limit our attention to this region.

To determine the normalization conditions we use (3.1) to connect

the limit of A as z,z' - + « with the function A which was obtained in the
homogeneous case. We assume that the homogeneous A is

Apom(Pw) = 27 p(p) 6 (w- h(p)) : (3.34)
where
8 9 =
p(p) = [1 " Sa Vhom (p.h(p))] . (B30

[In the Hartree approximation p(p) = 1, and (3.34) reduces to (2.40).]
Application of (2.34) and (3.24) gives the two-dimensional transform

2
; ip, (z-2') Ee ) :
Apom (Przz'e) =fdpz cibalii p(P)‘5(“’+ = e o TR (3.36)
From (3.32) we may obtain the derivative
d ¥ p e}
7 h(p) = p(p) [; ¥ =a ‘hom (p,h(p))] , (3.37)
which reduces (3.36) to
ik (z - z') -ik(z - z')
0 g=e
Anhom(przz' @) = 1 i 5
g [gn S O Vhom(Prh(P)):l
_ cos k(z-2z')
= (3.38)
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where k is determined by (3.30) or equivalently (3.31) and (3.32).

On the other hand, the substitution of (3.29) into (3.33) yields

2

fcos k(z-z') - cos [k(z+z") + 27 (k)]} . (3.39)

@
A(prZZ|w) z,z' > | g

The second cosine term may be neglected, since it becomes rapidly oscil-
lating for large z and z', and will vanish in any integration over k. Com-
parison of the remainder of (3.39) with (3.38) establishes the normalization

1/2

2

. : ) 3.40)

c 1 1 9 (
k[ + & < Vhom (p.n(p)

where the phase has been chosen to yield real wave functions.

Even for numerical calculation, (3.27) will be reasonably tractable
only if the effective potential has a simple momentum dependence. There-
fore, in the following derivations we use a generalized effective-mass
approximation similar to that in Section II.3, in which this dependence is
assumed to be even and quadratic. However, V cannot be assumed
a priori to be independent of the direction of p, but only of the orienta-
tion in the px,py-plane. We must use the form

V(zpw) = Vo(z®) + Wi (z W) pi it V”(zc_o) pZZ ) (3.41)

where ® =  + (pi/Zm). Equation (3.23) then gives

V(zpw) = Vo(z ®) + V| (2 ) p?
————V(zw)+i——v = —~— 5
4 507l P oaz ) Eeeat V) (zo)py . (3.42)
By substituting this into (3.27) we obtain

0 = 1 d
2 [0+ ) v

2
{‘w t Volz @) +V, (23) p - % L M (Z'I)] Y(zppw) . (3.43)

dz?

This is a local Schroedinger equation in which the mass has been replaced
by a spatially dependent function.

To remove this dependence we m
substitution P ake the
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e
¢’(Zpr w) = [V” (z@) + 2;:{ ¢(Zpr w) s (3.44)
which reduces (3.43) to
3
32 Hz pr ) =
s
= 20 e
-w + Vo(zw) + Vll(zw) e +% (;iz dz |l 1 o(zpy @) . (3.45)
V”(z<,o)+ZTn V“ (zu>)+‘§l

In establishing the normalization we must use the homogeneous
effective potential of Section II.3, which was derived using the effective-
mass approximation. With our generalized energy dependence this has
the form

el A= Vel i sl 5 . (3.46)
Therefore, in the limit z - + o,

b
V] (2®) > V,hom () 5
V“(za) e o () (3.47)

el

Vi (@) =2 Vil

el

The substitution of (3.46) into (3.40) gives

1/2
c = g : : (3.48)
k [vzhom(a) i ]

2m

If we substitute this into (3.29) and compare the result with (3.44), we ob-
tain the normalization condition

Pz pr ) ——#=1/2/k sin[kz + ()] . (3.49)

The simple momentum dependence of (3.46) allows us to solve (3.30)
explicitly for k, obtaining
= _ 12
® - Vohom(®) - Vhom(®) Pzr
k = I : (3.50)

v, hom(a) % o




In summary, we have defined a partially transformed spectral func-
tion A(pr z z' w) by (3.24) and expressed this function as a product of wave
functions in (3.33). In the effective-mass approximation these wave func-
tions satisfy (3.44) and (3.45), with the normalization being determined by
(3.49) and (3.50).

We must now obtain expressions for the density and effective poten-
tial in terms of the partially transformed A. At this point we discard the
generalization of an energy-dependent effective potential and again limit
our derivation to the Hartree-Fock case. To find the density we substitute

(3.24) into (2.29) and rewrite the px,py—integration in polar coordinates,
obtaining

pf q u-(er/Zm) e
p(z) :f % f %A(przzw) (BR5)
0

2
Vohom * V:hom Pr

The finite area of integration in (3.51) is caused by the lower bound of the
energy spectrum of the wave functions, given by (3.33). This establishes

a lower limit to the w-integration, and truncates the p,.-integration at Pf»
for which the w-limits are equal.

Similarly, to find the effective potential we substitute (3.24) and

(2.29) into (2.27), and transform the resulting expression according to
(3.27). This gives

2T vz 27 dz

r 0

Pt i qo -(p'? o
V(Zprpy) = ‘/-dZ‘ w(Z-2') p(2') - Zf f p}dp: fﬂ (Pr/Zm) dw
iV

g ohom * V2 hom P

27 ® dp!
% 6 E COS DL zv (Jz 2 [ 2 Tv2
2 T PZ 2z Vex \W/Pr-2prpr cos6 +p,’+(pz - pyz)
0 -

A(Pi—- z+2 Z-i,w)

25 2 4
(3.52)
where v(Z) is defined by (3.12) and vex(p) by (2.39). If v and Vex are the
Gaussian potentials (2.49), this reduces to
= ® 2 5 2 P, i ¢ pi"*P‘r‘"
V(Zprpz) = - =% f dzt ¥ E2 5, 2Mhex (M prdpr - © (Prer
at ), 3 i 2
- (py?/2m) e ol
x ’;‘Df dze_azcosp ZA('Z+£Z 2
‘Vohom “ eeran PrZ 2y o 2 bt 2 e w) ’

(3.53)
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where Ip is the imaginary Bessel function of the first kind.
To carry out the effective-mass approximation we must approxi-

mate (3.53) by a quadratic function of the form (3.41). This is done by the
least-squares procedure of Section II.3; the quantity

2 2
e - [ (@) & F/F) ) +v, (0t + V) (2122 - ViepIF (3.54)

is minimized by setting its derivatives with respect to V,, V.l. » and V)
equal to zero. The solution of the resulting simultaneous equations is

vi(z) = Z M;;U5(2 ; (3.55)
where
1
1 (2 an?
seal e f(dp) /B iy 4 (3.56)
BN 2
pZ
and
0 gIs 1]
5 1 b
o B 5
1 1
A= il st i 0 (3.57)
p p
1 2
i i a2 0 =
Combining (3.55) to (3.57) with (3.53) gives
L X—llfmdz' o =20 ey
a
Veoy (2) = -
{i}
Il
Pf p-(py/2m) Py

i« 87X ex Pr dPr dw 5_4‘12"52
4a2 + B2 2m 5 2m
0 Vohom * V2 hom PT

‘ 4t P}

2 - — - 5 oqo + —

4a2 +p2 (40 + p2)? + p2)?
Sk L e )
402+ B2 (4a?+ p2)?

(.1) g (3.58)

2



where

e -

In the near-vacuum region it is possible to make a conjecture as to
an analytic approximation to the potentials. In this region the semi-bound
wave functions will be approximately proportional to exp - 2mw z). The
slowest decaying wave function, which presumably will dominate the integrals
in (3.58), occurs for w= j. Thus, we may expect that, as z > - =, Vi Vj'_,
and V” will go to zero as the square of this function, i.e., as exp( 2o/ 2 z).

[oe]

202y 2 1
z

III.3. Numerical Computation

At this point the main problem is the solution of the Schroedinger
equation (3.45). A perturbation method seems feasible, but, unfortunately,
if we require the unperturbed potential to approach zero on one side and
Vo + Vzpzr on the other, the simplest possible unperturbed wave functions
are hypergeometric functions, and the resulting integrals are completely
intractable. It seems preferable to treat the equation by direct point-by-
point numerical integration. By using such a method, the solution of the
inhomogeneous case can be determined by an iterative procedure in which
during each iteration the semi-bound wave functions are calculated for an
approximate effective potential, and then a closer approximation to the
effective potential is obtained by integrating the wave functions.

Such a computation was programmed for an IBM 704 Electronic
Data Processing Machine. During each iteration the computer begins with
a table of the functions Vy(z), V_L(z), and V| (z) covering a z-range of
8 fermis, and performs the following calculations:

1) ! The table of Vy(z), V.L(Z)’ and V), (z) is extended on each side
by about Zz-.fermls. In the right-hand region these functions are set
equal to their values for the homogeneous case. On the left, they are ex-
tended by assuming that they are proportional to exp( 2 /-2mpu z).

2) The various derivatives and products of Vy, V|, and V|| which
appear in (3.45) are calculated. 1 L

3) For given values of Pr and w, a table of the wave function
®(z pr w) is calculated in the left-hand extension by assuming that the
potential term in (3.45) is proportional to exp(Z w/—Zm,u z). Such a poten-
tial has wave functions which are Bessel functions, of the first kind and
nonintegral order, of an exponential of z.



43

4) The table of ¢(zpy w) is computed for the remaining z-range
by point-by-point solution of (3.45). A modification of Noumerov's method
is used which gives an error at each point of the order of the eighth power
of the mesh spacing.

5) The normalizing constant is computed from the values of the
wave function and its derivative at the midpoint of the right-hand exten-
sion. The entire wave function is multiplied by a constant to give a nor-
malization satisfying (3.49), and (3.44) is used to transform the wave
function into ¥(zpy w).

6) The integrals Jo and ofz in (3.59) are calculated for the non-
extended z-range of 8 fermis.

7) Steps 3) to 6) are repeated for various values of p, and w
covering the region of integration in (3.58). A new table of Vy(z), V) (2),
and V|| (z) is built up by integrating 4, and &, over these variables. In
the same manner, (3.51) is used to compute the density p(z).

-

The computation was performed with the use of the parameters
obtained in the solution of the homogeneous case by the effective-mass
approximation, i.e., the data in Table II. The initial table of the V's was
obtained from the formula

Vo (2) Vohom

e1.5(z- 3.5) % e
Vv g — ; 3.
1 (2) 1+ o!5(z-3.9) 2hom ( )
V” (2) V2 hom

Nineteen iterations were carried out. The early iterations, which used a
mesh spacing of L fermi and a 12-point formula for the py and w integra-
tions, required 45 min apiece. During later iterations the mesh spacing
was halved and a l16-point integration formula was used. On the last iter-
ation (3.52) was used to compute a table of V(zpr p,) from the approximate
wave functions. The entire computation required about 2 hr.

The density and potential functions obtained from the last iteration
are tabulated in Table III and are shown in Figures 2 and 3. The surface
is seen to be quite sharp, as expected, with an exponential tail on the
vacuum side and a strongly damped oscillation on the interior side which
is apparently due to the formation of standing waves. The functions V_L(z)
and V) (z) are nearly equal, although there is no obvious theoretical reason
for this. Figure 4 gives a set of momentum profiles of V(zpy py) for various
points along the Z-axis.
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DENSITY AND EFFECTIV

Table III

£ POTENTIAL ACROSS A PLANE

SURFACE OF NUCLEAR MATTER, IN THE

HARTREE-FOCK AP PROXIMATION

Z () o3 (%) Vo (Mev) V) (Mev-£%) Vil (Mev-£)
0.0 0.0003934 -1.175 0.3847 0.4669
0.25 0.0004214 - 292 0.4207 0.5281
0.50 0.0004808 =i A1 0.4767 0.6081
(075 0.0005820 -1.742 0.5624 (0 71152
1.00 0.0007426 -2.152 0.6920 0.8576
125 0.0009912 -2.768 0.8861 1.063
1.50 0.001371 -3.689 174 1.361
1875 0.001948 -5.050 18591 18795
2.00 0.002809 -7.033 2.208 2.407
2825 0.004070 -9.854 BEOTO 3,261l
250 0.005856 =L g T 4.247 4.412
25 0.008275 -18.87 5 719 5.900
3.00 0.01136 ~25:29 7.689 H(3e
3125 0.01505 ~32.19 9.889 9.862
2250 0.01909 -40.92 12523 122016
525 QX2 3157 -48.95 14.50 14.43
4.00 0.02687 -56.06 16.46 16.43
4.25 0.02987 -61.53 17.89 17.94
4.50 0.03192 -64.88 18.68 18.80
4.75 0.03296 -66.05 18.83 18.99
5.00 0.03308 -65.35 18.46 18.63
525 0.03252 -63.45 L7 T8) 1794
5550 0.03162 -61.16 17.06 7Ly
EIN{5 0.03072 -59.21 16.49 16.56
6.00 0.03009 -58.08 16.21 1623
625 0.02985 -57.92 16.23 16.21
6.50 0202997 -58.52 16.48 16.43
6-15 0.03032 -59.55 16.83 16.78
7.00 0.03074 -60.58 1'7.15 s 1el
[(~25 0.03110 -61.32 17.36 17.34
7.50 0.03131 -61.63 187= 12 17.43
T OROE1BT -61.53 L35 7.5
8.00 0.03127 -61.17 17.21 W7z

oo 0.03087 -60.44 17.03 17508

2These quantities must be multiplied by a degeneracy factor

of 4.
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Fig. 2
VACUUM INTERIOR
& T The momentum-independent term Vy(z) of
the effective-mass approximation for the
3 effective potential across a plane surface
of nuclear matter, in the Hartree-Fock
approximation. The quantity is given as a
function of z and is shown after each iter-
-48- n ation of the self-consistent computation.
5 ITERATION NUMBER
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Fig. 3

The density p(z) and the quadratic 8

terms V_L( z) and V]|( 2z) of the effective-
mass approximation for the effective
potential across a plane surface of
nuclear matter, in the Hartree-Fock
approximation. All quantities are
given as functions of z. Thetwoterms
V.L and V), which are coefficients of
the momentum components perpendic-
ular and parallel to the z axis, are
equal within the limited accuracy of
the graph, except in the shoulder re- 4o
gions where a small difference is in-
dicated by splitting the curves. The
density p(z) must be multiplied by a 5+
degeneracy factor of 4.
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Fig. 4. The effective potential V(zp) across a plane surface of nuclear matter in
the Hartree-Fock approximation. In this case, V(z p) was computed with-
out the effective-mass approximation [i.e., from Eq. (3.52)] but from wave
functions which were obtained with the effective-mass approximation. Two
functions Va(zp) = V(z, pr = p, pz = 0) and VB(zp) = V(z, pr =0, p, = p)
are shown as functions of p for selected values of z. The two functions
are equal to within the accuracy of the graph except where indicated by
splitting of the lines.

The surface thickness, which is the distance in which the particle
density rises from 10% to 90% of its asymptotic value in the interior, is
2.01 fermis. This may be compared with a value of 2.5 * 0.2 fermis ob-
tained from high-energy electron-scattering data.

Figure 2 also gives the results for Vy(z) from some of the earlier
iterations. During the later iterations the solution has converged except
for a slow drift backwards along the Z-axis, which is probably due to
numerical errors in the spatial boundary conditions.

A detailed discussion of the more important numerical methods
which were used is given in Appendix A.



CHAPTER IV

THE PUFF-MARTIN APPROXIMATION IN THE
HOMOGENEOUS CASE

IV.1. General Derivation

Chapters IV and V present solutions for homogeneous and inho-
mogeneous nuclear matter in an approximation which takes into account
certain two-particle correlation effects and is capable of describing
the saturative effects of a repulsive core in the interparticle potential.
This approximation was developed by Martin and Schwinger(ls,and applied
to homogeneous nuclear matter by Puff, 2) who also gives a discussion of
its accuracy. The derivation given here differs from Puff's derivation in
that the use of a Fourier series in energy is avoided and the Fourier
transformation of spatial variables is postponed until a later step. How-
ever, the resulting equations for the homogeneous case agree with those
obtained by Puff.

For the sake of clarity, the following derivations parallel the
presentation of the Hartree approximation as closely as possible. Use
will be made of certain results from the preceding chapters which are
generally valid and not limited to the Hartree case.

To simplify the notation, let the numerical variable k represent

the set {, rk, tk, and let (dk) represent summation and infinite integra-
tion over these variables. In this notation (2.1) becomes

VZ
[i ga; + 2—‘ + p] G, (1; 1) + if(dz)(di)(di) 2l AT 2 e 2y i) =
1

m
(g L (4.1)

where

<1 2|v|T 2> =<xyra|v T 2> 8 (- T1) O (t2-T2) 0 (8- t2) . (4.2)

The analogous equation for G, is

d v2
el i U w21 5 W43 2 M7 2l ot R
[1 3 i +u] Gy(1 2;1'2') + i f(d3)(d1)(d3)<13|v|13> Gs(1123; 112158 =

8(1; 1') Gy(25 2') - 6(1; 2') Gy(2; 1) . (4.3)

47



48

Equations (4.1) and (4.3) may be combined into an equation for the differ-
ence between G, and the Hartree-Fock approximation G,G,-G,G,,

[1—5; dt ZV_TW] (@t 2a 1A S el I (P 20) 45 @ s 20) @@ ilil=
1 m
-i J(d3)(d1)(d3) <13|v|13>
x [G4(T23;1'2'3%) - G,(13; 1'3%) Gy(2: 2') + Go(1 3;2'3F) Gy(2;1')] . (4.4)

. 2 ;
By applying the differential operator [i (0/03t,) + (V/Zm) + i ] to this
equation, and using (4.1) and the equation for Gs,

~ 2 . % 2
[iﬁ-Jr T ,l} Gs(123;1'2'3") + i [(d4)(d1)(aZ)<14|v|T 2> G4(T23%;1'2'3'4T) =
ot, 2m

G0lg NDNCAE 35 2l el e M@ A(Aag TUENs §((ilp &) @i &5 1E20)) (4 5)

we may obtain an equation for G, which is symmetric in the variables 1
and 2,

> , Vi Lt G 12-1'2')-G(1-1')G(2-2‘)+Gl(1:2‘)Gl(2;1‘)]
[ia_':l+a'+‘u 1§;+m+p z( ’ 113 1045

-i [(al)(d2)<12|v|IZ> Gy(12;1'2) =
- [(dl)(d2)(d3)(d3)(d4)(a%) <13|v|13> <24|v|]24>
x [Go(1233;1'2'3%4%) - Go(13;1'3%) G(27;2'4%) +G,o(13;2'3%) Gp(24;1'4™)] . (4.6)

The Puff-Martin approximation is obtained by neglecting the right=
hand side of this equation. This is equivalent to approximating Gy by a
combination of G,'s which retains the two-particle correlations between

the pairs of particles (1,3) and (2,4), which, inturn, are coupled by the
interactions.

The approximate equation may be rewritten in integral form by
using the free particle function G{ which satisfies (4.1) with v = 0:

\ 2
i£‘+&+# Gy(1;1') = S (4.7)
oty 2m L= » : .

In converting the approximation to an integral form, attention must be
given to the periodic boundary conditions. Let us restrict T to real values,
limit the free variables t, t,, t}, and t; to the interval 0 to T, and



restrict the time integrations to 0 to 7 (indicated by square brackets).
Under theserestrictions the approximation to (4.6) is equivalent to

G2 120 = G (T NG (2:27) = Gy (1; 2") Gy(2;1")
+i[[d1"][d2"] Gy(1;1") Gf(z;z")[[df][dé] 1m2n|v|TZ>
G2l 21)0 5 (4.8)

since operating on this equation with the appropriate differential operators
gives (4.6), and the equation satisfies the boundary conditions on G, pro-
viding the G{'s satisfy similar conditions.

The form of (4.8) reveals an asymmetry between unprimed and
primed coordinates (as may be seen by expanding the equation in powers
of the potential) which is a serious defect in the approximation, since it
implies that the approximate G, and G, cannot simultaneously satisfy the
G, equation (4.1) and its adjoint. This violates a set of conditions which
have been shown by Baym and Kadanoff(11) to be sufficient to insure the
conservations of particle number, momentum, energy, and angular mo-
mentum in a system which is subjected to an external disturbance. There
is also reason to believe that this asymmetry is responsible for the viola-
tion of u = dEo/dN and the related ambiguities in the pressure, which will
be discussed in Section IV.3.

The functions G; and G, are now determined by the simultaneous
equations (4.1) and (4.8). In order to separate these equations, we intro-
duce a subsidiary two-particle function ( satisfying

Q12;1'2') = &(1;1') 6(2;2') + if[dl"][dZ"] GY(1;1v) GY(2; 2")

x [[dl][d2] <1"2v|v|I 2> Q1 2;1'2') (4.9)

along with boundary conditions similar to those on G,. In terms of (I,
(4.8) has the solution

Cfl 2p1°27) = [ [a17Ya2"] (1 2; 1"2")
&AL G (2 T2 e e (P ) G (20 ) ] , (4.10)

which gives G, explicitly in terms of G,. Substitution of this into (4.1)
gives

li. | Vf t i T =Y " n T
13, T am” N] Gy(151") + i f[a2][aT)[aZ][a1" [az"] <1 2|v[TZ >

= (e (iR e (2i2d) e (1 17) = 6(1;1Y) . (4.11)
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To solve (4.11), since v is local in time, the function Q(12;1'2') is needed
only for t; = t;. For this case, the substitution

Qrityratys ity Tots) = 5(t] - t) Q(r raty; Tyrats) (4.12)
reduces (4.9) to
Qr,rat; Ty1at') = o(t-t') &(ry-ry) 6(rz- ;)

+ if(dr{')(dré') fT dt" GY(rt; ry't") Gi(rat; ryt")
0

x [(dT))(dF,) <vy'r3|v]FiT2> Q(F,Tot"; rirat') . (4.13)

We now wish to reconvert (4 13) into a differential equation by

: ; .8 vZ 4 v2
operating on it w1th[ = s —Zr—n—-+ 24
Q satisfies an even boundary condition, ©(0t') = +Q(T t'), since both GY's

in (4.13) change sign as t goes from 0 to 7. Secondly we may use (4.7)

We first note that the reduced

to obtain
-0 VfJ’Vg 0 AT Al T =
2 T2 ] Gt nie) Gt i) =
b(t-t1) [8(ry - 1}) Glrgt; 1at) + 8(r2-73) Gilntimyt)], (4.14)
where
Gzt z't) :—;— [Gf(rt;r't+) + Gi(zxt; r't7)] . (4.15)

Since the Hartree-Fock derivation in Chapter II is exact for free particles,
Crl may be obtained by substituting the free-particle solution Aylpw) =
276 (w - (p?/2m)) into (2.17). This gives

Gilrt; r't) :f((;i;3 elp(r - T') Goolp) (4.16)
where
p* o
ils— -7
Goo(p) = % coth@ : (4.17)

Using these results, and replacing p by —V to indicate Fourier transfor-
mation, we obtain the desired differential equation. Equation (4.13) is
equivalent to



o Vf T Vg tErt !
Dt 2 Qryrot; Tyrat') - 6(t-t') 8(r; - 1)) é(rz-rz)] =

i[Goo <21‘—) +G (%)] f(dfl)(dfz) St v|m e (e o e
(4.18)

along with the even boundary condition on . If we introduce sum and
difference coordinates,

rtr Y
:172 0 T=ini=rs 5 V1=2—R+ Ve 3
VR
Vo= T Vi 5 (4.19)
and use
<rirp|v|rir>=v(rr') 6(R-R') (4.20)

then (4.18) becomes

d VR
la—t+4—m+—+zu [alRrtR=w] - 6(t-t) S(R-R) O(x - =] =
g oV, YR Y
oo e ) ou (R 2]
f(df) (rF) Q[RFH; R'c't'] (4.21)

where the square brackets indicate sum and difference coordinates as in
(@59

Now () is the solution of a linear equation whose kernel is spatially
homogeneous, and therefore (I itself is spatially homogeneous, even when
G, is not. Thus we may introduce the Fourier transform

Q[Rrt;R'r't'] =/@ eiP(R-R') Q(Prt;r't') . (4.22)
(2m)?

which reduces (4.21) to
5 a Pz vr } . 141 - - 1 - 1 -
[1 el +2u| [Q(Prt;r't') - 6(r-zr') O(t-t")] =

f(df) Py MEEE o) | (4.23)
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where

pErT o [G“(; i Z-1£>+ Goo(zE - ?)] )

(4.24)

We note that in the low-temperature limit as iT— o, providing < 0 (which
is the case for nuclear matter), the hyperbolic cotangents in Gy, will go

to one, and ¥(Prr') will reduce to v(r r').

Equation (4.23) has the solution

QPrt;r't) = 8(z - ') 5(t-1') +f(dr")?(Prt;r"t') APz

where C;« is the Green's function satisfying

2 2
l:i % = gr—n +%+ Zu]?(Prt;r't‘) -f(df) V(Pr?)?(P?t;r't') =
==z N6 (t=t!) ;

along with the same even boundary conditions as {.. The function

s

(4.25)

(4.26)

may

be expressed in spectral form by a process similar to (2.12) to (2.19), but

using the even boundary condition instead of (2.13). The result is

1fdw -i(w S92 +£—> (== 1)

?(Prt;r't') Sl
@ (125 slgy)
; Lot
1 - e-ilw-2u + P2/4m)T
X
P 1
. aErrw i

1 - eti(w-2u + P?/4m)T
where (¢ satisfies

Vr

2
(w + —E>@(Prrvw) -f(d})§(pr;)@(p;r.w) =0

and the normalization condition

fdﬂ@ (Prr'w) = 6(r-r')

(4.28)

(4.29)

(4.27)



From (4.28) we may infer that & is composed of wave functions of the
reduced-mass system of two particles with an interparticle potential
V(Prr'). It will be useful to define a scattering matrix in terms of & :

<r|t(P o)[z=> = v(z ')

" m " do! @(Pr"r"‘w') e "ot
+f(dr Vo) ol o )f/z_7T @B e l0) S emrr) . (4.30)

As iT—~w and V—v, the quantity t becomes the conventional two-body scat-
tering matrix for the potential v.

Having obtained the function (2, we now substitute our result into
(4.11). Using (4.2), (4.20), (4.12), (4.22), and (4.25), we obtain

2

) v !
[1 al + Frlx +,u:| Gy(rt; rpt')

+ if(dri')(drz)(dré') 6(R-R") Vsym (r x") Gy(rat; rtt) Gi(ry't; rit')

3 15 n n dP S, _nn % = =
4 1[) dt"f(drl )(dr;)(dr;) ((?w—))} eiP(R-R )f(dr)(dr) v(rT)

x ?(Pft;? t") Vsym (PTr") Gy(rat ; ratt) Gy (b ot )i

8(ry-1y) o(t-t) (4.31)
where

Vsym(r r') = v(r,r") - v(z, -x") : (4.32)

and similarly for V. In (4.31) the space variables without numerical
subscripts are sum and difference coordinates defined as in (4.19). Ex-
cept for the last term on the left-hand side, (4.31) is equivalent to the
Hartree-Fock equations (2.3) and (2.4). The correlation effects are de-
scribed by the additional term, which is nonlocal in time.

We now wish to derive an equation for the spectral function A.
Equations (2.11) to (2.17) and (2.19) are still valid, but the simple pro-
cedure which led to (2.18) is no longer applicable because of the non-
locality of the additional term in (4.31). Instead, to obtain an equation
for A we may proceed as follows: Let

’

Vo(rlr;) = -i [(dr,)(dr;) 8(R-R') Vsym (r r') Gy(xst; rath) ; (4.33)
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and

U(rt; ryt') = -iﬁdrz)(dr;) (dP)3 e LB (RAGSRID)

- f (dr")(dr"') v(rr") C/-/(P r''t; rmtn) ;sym(prmrv) Gl(r;t'; rzt) .

(4.34)
Using these functions and suppressing the spatial coordinates into a matrix
notation, we may write (4.31) as

3 v L e e (4.35)
i§+iﬁ+“_v° Gl(tt')-f dt"U(tt") Gy(t"t') = o(t-t') . -

0

We introduce the functions G and G¢ defined by (2.11) and satisfying
(2.12) and (2.13). Similarly, we define U and Ug by

U>(tt') : t>t!
U(tt!) =
WA (4.36)

and in the remaining regions of t and t' by analytic continuation. Now,
the independent time variables have been restricted to the interval 0 to T.
If we impose the additional restriction t'<t, then the substitution of (2512
and (4.36) reduces (4.35) to

3. v %
i 5?+ 5 + p - Vol Gy ([560) -/ dt"Us(tt") G (t"t')
0

t i
—f dt"Us (tt") G(t"t') -f dt"Ug (tt") G>(t"t') = 0 . (4.37)
t i

But, unlike (4.35), equation (4.37) is an analytic equation in analytic func-
tions. Therefore it must hold, not only in the region 0<t'<t< T, but
throughout the entire range of t and t'.

Because of (2.13) and the analogous even condition on q,, (4.34) im~-
plies that

WSS (Et)i= S UR (v Ut (4.38)



wm
(5}

The substitution of this result and (2.13) into (4.37) to eliminate U, and G¢
gives

d vz t
at = - Vo G>(tt') -‘/t" dt"U>(tt")G>(t"t')

T £
+f dElus (NG (EUtH) =0 . (4.39)
t

If we introduce the Fourier transform of G given by (2.14) and the
analogous transform of U>,(5)

Us(tt') :f;‘fi et H@-p)(t-t) uy(w) (4.40)

since U depends only on t-t'), we may transform (4.39) into
> Y Vi

Wik 1 " 3
Lo e E fdtf atn eiler - @) 1+ (! -wn)

__ile-i(a)' = p)det /Tdtuu eilw=-w)t+i(w'- w")t":l us(w') g5(w") = 0
t

(4.41)
The quantity in square brackets is equal to
2m —r— [(1 +e o' - s (w-w") - (1+e7HO" =BT 5(w - o) |,
w w
(4.42)
so that (4.41) is just
3
S T Z_m VO g>(0.))
dw' 1 —ily! -
- P 2‘2 e [1+e"i(w P-)T][u>(u)') gs(w)tus(wlgs(w)]=0 . (4.43)

Here P indicates that the principal part of the integral is to be used, as
may be verified by replacing the denominator in (4.42) by w" -w'+ie,
substituting into (4.41), and using

S
me = PE At 7T15(<D) . (4_44)



We now express gs in terms of A by using (2.16), and treat us,
analogously by defining a function B(w) such that

B(w)

u>((b) = ;—;W " (4.45)

Finally the substitution of (2.16) and (4.45) into (4.43) gives the desired
equation for A:

2 1
|:u) + -Zvr—; - vo} Alw) - P ‘i—;b w_lw, [B(w') A(w) + B(w) A(w)] =0 . (4.46)

We may define a function which is analogous to the effective poten-
tial in the Hartree approximation by

V(w) = Vo +f SR ; (4.47)

e (08)= (db

where @ may be complex. The increased complexity of the Puff-Martin
approximation is expressed by the energy dependence of this function. In
general, V(w) will have a discontinuity across the real axis at @ if B(w) ;! 0.
For regions of & in which there is no discontinuity, i.e., in which B(w) = 0,
equation (4.46) reduces to the simple form

VZ
[w it V(a))] Alw)=0 (4.48)

2m

or, explicitly,(5)

vZ
[CD + ﬁ} Alr o) -/(dr{') Viryefw) Alzin o) =0 (4.49)

which is analogous to the Hartree equation (2.18), and which permits a
wave-function expansion similar to (2.20) and (2.21).

Although we will need to find A(®w) only in the region of @ in which
V is continuous, we will need to deal with the general situation in order to

normalize A. In this case, it is useful to define an energy Green's function
(for complex w):

_ [ ' Alw!)

G(w) = e (4.50)



1"
Replacing w by w" and performing the operationfd—w o (for complex
; 2T 0y=

n (4.46) gives

2
/ 2 )+ (o4 55 - ) ot

d;;'f‘;ﬁ' — . —— [B(o') Alw") + B(o") A@D]=0 . (4.51)

The first term may be evaluated by using the normalization condition
(2.19). In the double integral the symmetry of (BA+ BA) in @' and w"
allows the replacement

1 1 1 1 1 1 1 1 1 il
—_ e = 3 ==
(D- (D" (l)" - (DI Z (_D— U.)" a)” - (—D' a)_ (D. wl - a)ll 2 w - (D’ d)_ w"
(4.52)
Thus, (4.51) reduces to
v? 7
+ — - = 5 .
(w v V(u))) G(w) =1 (4.53)

Once this equation has been solved for G(®), the function A may be ex-
tracted by using

A(w) =fﬂ[ A(w'). = A(wl).ejl:il[G(w-ie)-G(w+i€)]

2B = el =ie =il
(4.54)

We still need to express V(w) in terms of A(w). By substituting

(2.17) and (4.27) into (4.34), and using (4.36), the inverse of (4.40), and
4.45), we obtain

I' r (dP) (R‘R')/ " r'") v(r "
Hw)/ 2)() (dr")(dr™) v(rr")

2
x @(Pr"r"', w+ w' -‘%;) Vsym (P r™mr') A(rpr,w')

el @S )i
x[(l_e-i(w+ w'=2u)T )(1+ei(w' -'u)T):l . (4.55)

where the factor in square brackets reduces to

—

1 1
si(w+ @ -2p)T g (et - )T

(4.56)
1=¢
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We must find the low-temperature limit of (4.55) as i7—~® and ¥—>v.
This limit will be greatly simplified if we may assume that 2u< w,, where
Wy = -2.225 Mev, is the binding energy of the deuteron. We will find this
assumption to be justified for nuclear matter at reasonable densities.

Now the function & is zero when ® + w'-(P?/4m)< w,, since W, is the
lowest eigenvalue of equation (4.28). Thus'if 2u< w,, then & = 0 for
w+ w'=2u, and we need only consider the region W+ W' > 2u in taking the
limit of (4.56) as iT =~ w. In this region the limit is #Z _(w' - ), and sub-
stitution into (4.55) gives

£ ' - .
B(r,r0) =f %07% (dr;)(dr,) ((Zd:))s eiP-(R-R )f(dr")(dr"')

x v(r r")a(r"r"', wtw' - %)vsym (r'rt) A(rpr,0') . (4.57)

Since @& is zero for w+ w'-(PZ/élm) < wy, then B(w) is zero for
w< Wo~ i, and in this region V(w) will be continuous. But on the other hand,
to determine B(w) from (4.57) we need to know A(®W) only for w< 4. If we
again assume 24 < Wy, then this region is entirely within the region in which
V(w) is continuous, and a self-consistent solution for V(®) can be obtained
without finding A(®) in the discontinuous region of V.

Substituting (4.57), (4.33) and (2.17) into (4.47), and using (4.30), we
finally obtain

H g A
V(r,rw) =f i—?_r (dr,)(dr;) ((:f)):; eiP(R-R')

x <r

PZ
Eayrins (a)+ w' - m) r'> A(rrw') (4.58)

where

<r|tsym(a))[r'> = <rltw)|r'> - <z| t(w)] - 2> : (4.59)
and <r|t(w)|r'> is the scattering matrix of the reduced-mass two-body
system, defined by (4.28), (4.29), and (4.30) with ¥(Prr') replaced by
v(rr') to give the low-temperature limit.



In the preceding discussion we have ignored the presence of the
internal variables of spin and isotopic spin. These variables may be made
explicit by considering equation (4.11), which may be written as

2

v
[1 Bitl + ﬁl + ,u} G, (1;1') + i/[dZ][dl"][dZ"]

=012 121 s 6(12,’{2"1")]G1(2";2+)Gl(l";l')= QAT , (4.60)

where
o(12;142") =f[dT][dE] <12|v|]12> q(12;1"2") . (4.61)

Any two-particle function such as 6 may be expanded in exchange opera-
tors in the internal variables, in the same manner as in equation (2.7):

6 = 6ol + 66P9 + 6. PT + GOTPOPT . (4.62)
The same reasoning as was used in Section II.1 leads to the conclusion
that the internal variables may be accounted for by replacing the differ-
ence of 6's in (4.60) by

B{EPs LU AR RO S (182 F2 I TR) s (4.63)

where

e

490+ 290 +297-+607- H
(4.64)
Bex = Bot 265 + 26 + 465,

In the Puff-Martin approximation it is convenient to replace the
expansion of the two-particle functions in exchange operators by an ex-
pansion in singlet and triplet projection operators:

6 = 055 PIP] + 615 PIPJ + 05tPIP{ + OuPEP{ (4.65)
where
L O R T E S
8,2 ’ ti5.2 ;
(4.66)
P§=%(1-PT) : PT:%(1+PT)

If we substitute (4.66) into (4.65) and compare the result with (4.62), we
obtain expressions for 8y, 6 , 9,,., and 6 —in'terms of {044, Etgs Bty
and 6. Substitution of these into (4.64) gives
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1 3 3 3)
4] :ZQSS+ZQts+ZGSt+ZQtt H
(4.67)

5 5

9
st_ZQtS—Z Gst+zett

| =

eex

The advantage of the singlet and triplet projection operators is

their orthogonality. Because of this property, when an expression [such

s (4.61)] which involves the folding of two-particle functions is expanded
in the projection operators, the cross products of the operators vanish,
and the expression holds separately for each of the four types of func-
tions: ss, ts, st, and tt. Such a separation may be carried out throughout
our entire derivation, and results in the replacement of (4.59) by a com-
bination with the same form as (4.67):

3 3 3 Ak ,
Loalftig g )= +Z<r|ttsl-r'> + 7 Ll ] = -Z<r|tttl SSabs (L)

where the t's on the right-hand side are two-body scattering matrices
corresponding to the interparticle potentials vgg, Vig, Vst, and vit.

The equations (2.29) and (2.33), which express the particle and
energy densities in terms of A(®w), are exact and still valid. (They must
still be multiplied by a degeneracy factor of four.) Thus, in summary,
we have the functions A and V determined by (4.48) [or (4.53) and (4.54)],
(2.19), (4.58), and (4.68), where the particle and energy densities are
given by (2.29) and (2.33).

IV. 2 - The Homogeneous Case

To obtain equations for the homogeneous case we introduce the
spatial Fourier transforms of A and V as in (2.34) and (2.35):

(=)l = f (e = i) Ap w) (4.69)

and
V(rr' w) f P(r-r)vipaw) . (4.70)

The transformation of (4.48) gives

2
[w = Zp—m = V(pw:)J Alpw) = 0 , (4.71)
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and (2.19) again becomes (2.37):

f%%MpMZI : (4.72)

However, (2.40) and (2.41) are no longer correct, since the energy depen-
dence of V(pw) prevents (2.40) from satisfying (4.72).

We might expect to resolve this difficulty by multiplying (2.40) by
an unknown function of p and using (4.72) to determine this function. Un-
fortunately, this procedure is thwarted by the fact that (4.72) involves
A(p w) for all w, whereas (4.71) is valid only in the region of w where
V(p w) is continuous across the real axis. For this reason, we must resort
to solving the general equations (4.53) and (4.54) for arbitrary ® and re-
ducing these results for the case in which V(w) is continuous.

Fortunately, this procedure is straightforward; the Fourier trans-
form of (4.53) gives directly

G(pw) = o - ; (4.73)
w->— - V(pw)
so that (4.54) becomes
Alo) == : - : . (4.74)
bl ige s BLG YRl - le) e mdie ~EL ~ Yip,mtie)
2m ’ 2m ’

In the special case in which V is continuous across the real axis, this
expression is nonzero only in the neighborhood of w = h(p), where h(p)
satisfies

h(p) = %: + V(p,h(p)) (4.75)

[we assume h(p) is single-valued]. Therefore, we may replace V(pw) in
(4.74) by the first two terms of its Taylor expansion about w = h(p):

V(pw) = V(p,h(p)) + (w - h(p)) a—aw‘ V(p.h(p)) . (4.76)

obtaining the solution(5)

1 d = 1 1
A(p w) =i |:1 = a—wV(P,h(P))] [w-h(p)-ie i w-h(p)+i€]

=27 p(p) 6(w-h(p)) ., (4.77)




where -

o(p) = [1 -aa—wwp,mp))} . (4.78)

To express V(p ) in terms of A(p w) we must obtain the Fourier‘
transform of (4.58). If we introduce the Fourier transform of a scattering

matrix as

ol > = [LHO cipr <o) > e (.79)
(2m)

then, using (4.69), (4.70), and (4.79), we may transform (4.58) into(5)
(pr+ pz)zﬂ P, - P2

Haw P P2 ( o
¥k :f ETf(dsz 2 [tsym\®F ¢ T T p

x A(p, w") ; (4.80)

>

To facilitate the developments of Section IV.4 we write this equation as

K dw
Vipue) = [ ﬁf(dpz) K(py, pzr @+ ) Alpz0?) (4.81)
where
dq P1-P (Pr+P2)"\| Py - P2
1 B2
= b —_— | — 4.82
K(Pxpzw) f47T < 2 tsym 4m 2) ) ( )
@) . : : - =
and In is a spherical averaging over the angle between p, and pz.
Substitution of (4.77) into (4.81) gives
Vipio) = ] (ap2) K(py,pas 0 +hlpa)) pl2a) (4.83)

where I' is the region of momentum space where i -h(p)>0. As in the
Hartree case, we assume this region to be a Sphere(lz) and designate its
radius as the Fermi momentum pg, which must satisfy u-h(pf) = 0 or

u = h(pg) = ;—:n‘ + V(ps, hipg)) . (4.84)



The simultaneous solution of (4.83), (4.78), and (4.84) is simplified
by introducing a potential function of momentum alone:

V(p) = V(p,h(p)) . (4.85)

In terms of this function, (4.83) becomes

p +p
V(p,) = / | (dpz) K(py, P2, 12m 24 V(py)+ V(pz)) p(p2) , (4.86)
|p2|< pg
(4.78) becomes
-1
d pf+p}
plpy) = |1 f| l (dpz) 5o K(pr P25 + V(p)+ V() p(p2) |, (4.87)
P2 KPf
and (4.84) becomes
o2
i
Bl Vips) . (4.88)

In addition, by substituting (4.69), (4.75), and (4.77) into (2.29) and (2.33),
we may obtain expressions for the particle and energy densities:

& (dp)
o ﬁpK o, 277 o(p) (4.89)
and
2
i

With the substitution of (4.82), these equations agree with those obtained
for the homogeneous case by Puff.(2)

We will not attempt to obtain the general requirements for satura-
tion, which are extremely complicated in this approximation. It is suffi-
cient to note that equations (4.86) and (4.87) are sensitive to the detailed
shape of the interparticle potential, so that the dilemma which appeared
in the Hartree-Fock case no longer occurs.

For a given pg, the simultaneous equations (4.86) and (4.87) deter-
mine the functions V(p) and p(p), which, in turn, determine the chemical
potential, and the particle and energy densities through equations (4.88) to
(4.90). We will postpone the determination of the zero-pressure point until
the next section, and limit ourselves for the moment to determining K, P,
and € as functions of py.
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To keep the numerical solution of these equations reasonably
tractable, it is necessary to choose an interparticle potential for which
the scattering matrix may be found algebraically. We follow Puff(2) in
choosing a potential which is the sum of three separable terms, an S-
state hard shell and two Yamaguchi potentials(13 acting on singlet and
triplet spin states:

a
vV =vet Vyepg'i' Vytpt ; (4.91)
where
lim Thic 1
ve(rr') = lew?n?ﬁ 8(r-1o) 8(r' -rg) (4.92)
C
and

Xsor«‘:l =0y
—_— — e

e ¥sorth T sortt | (4.93)
m 2

Vy(s or t) {re!) = _%

Since this potential is independent of isotopic spin, the set of
four potentials in the full singlet-triplet expansion of v consists of pairs
of equal functions. Comparison of (4.91) with the general expansion (4.65)
shows that

Vss = Vst = Vg Vs = Ve t Vyg
where (4.94)
Vis T Vit = Vit iy = Vg v gy

A similar equality relates the four scattering matrices tgg, tg¢, tts, and
ttt to the matrices tg and t; derived from vg and v¢{. Furthermore, since
v(rr') = v(r, - r')for both potentials, we have <r|t|r'> = < r|t|-r' > for each
of the four t's. This reduces (4.68) to

<r|t

3
symlr‘> 5 [(rl tst|r'> + <rftyglr! >]

0]

% [(rltslr'> + <r]tt|r‘ >] : (4.95)

so that the effects of spin and isotopic spin are accounted for by simply

summing the scattering matrices for singlet and triplet spins and multi-
plying by 3/2.

The matrices tg and t; are determined by equations (4.28) to (4.30)
(in the low-temperature limit). The solution of these equations for the
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potentials in (4.92) to (4.94) is conveniently expressed by separating the
energy and space dependence of the t's. In this form the solution is

1
t(w) = e [ny(w)Tyy + ch(m)"ryc + Qcc(w)ch] q (4.96)
where e~ OTe -OLT' (YY)
1 '
Lol = o e 2T §(r'-rc) +e” 0T §(r-rc) (yc) o (497}
g(ci=rc) Bt (cc)
or
b 1
_— (yy)
a?+p? al +p'?
2 1 sin p'r sin pr 1
i Up = c + < 3 4.98
<plrlp'> == ﬁ e e (ye) (4.98)
sin prc sin p'rc (ee)
P p'
and
-1
2 -2yr 2 -yr -ar
)= u = EE s g = c 4m g Vc_ Cy\2
5 a(a + v) (a2 -v?)
[t (yy)
v Yy
272\ gitc -Qrc
xJ az-~e e = ) (ye)
2
S (ce) (4.99)
L ala +7y)
and
v = J/-ma . (4.100)

These expressions must be evaluated separately for the singlet and triplet
spin states (using g, Ag for tg, and 0y, A, for tt) and the resulting matrices
combined according to (4.95) to obtain tgym.

Puff(z) has computed values of the parameters of v by fitting them

to various scattering data and the binding energy of the deuteron. To permit
the comparison of results, we have used his parameters, which are equiva-
lent (in our units) to



|
1}

ag = 2.004 £ Ag = 3.64037 {72

e T T S (4.101)
8.6949 =3

2.453 £7! A

Zr

The IBM 704 was programmed to solve the equations for homoge-
neous matter for an interparticle potential of the form just discussed. By
using Gaussian quadrature formulas, equations (4.86) and (4.87) were ap-
proximated by nonlinear matrix equations. These equations were solved
by the following method:

1) The kernel K(p;p,®) and its first two derivatives with respect
to w are obtained by numerical integration of the scattering matrix tsym
and its derivatives, as in (4.82).

2) By means of this kernel a table of V(p) and p(p) is obtained
by solving the matrix equations corresponding to (4.86) and (4.87) for a
particular value of p;. This is done by iteration of a multidimensional
Newton-Raphson procedure.

3) From this table the chemical potential, particle density, and
energy density are obtained by using (4.88) to (4.90).

4) The entire procedure is repeated for a range of values of Pf-

This program was run with the use of the potential parameters in
(4.101). The results of the calculations are shown in Figures 5 to 8 and
tabulated in Appendix B. Figures 5 and 6 show the values of €, p, U,
E/N = €/p, and dE/dN = de/dp (computed from the values of € and o)
as functions of pg. Figures 7 and 8 show V(p) and p(p) for selected
values of ps. The results for E/N appear to agree with those given by
Falk and Wilets(14) for a more limited range of pf.

As shown in Figure 6, the numerical results violate the relation
Moo= dE/dN which should hold for exact results. This failure is presumably

a consequence of the asymmetry of G, in its unprimed and primed
coordinates.

IV.3 - Computation of the Pressure

The results of our calculation specify the properties of nuclear
matter as functions of the Fermi momentum Pf, or, equivalently, of the
density. We must now determine the point on these curves which corre-

sponds to zero pressure. In Chapter I we derived two expressions for
the pressure: (1.23),

P=p$-€ 5 (4.102)
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Effective potential V(p) of homogeneous
nuclear matter in the Puff-Martin approxi-
mation, as a function of p/ps for discrete
values of pg.
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Momentum distribution p(p) of homogeneous
nuclear matter in the Puff-Martin approxi-
mation, as a function of p/ps for discrete
values of pg
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and (1.24),
P= pu-ce€ . (4.103)

(Both of these expressions should be multiplied by a degeneracy factor of
four.)

Unfortunately, since our approximation violates the relation
u = de /dp, equations (4.102) and (4.103) lead to different values of the
pressure and thus to different densities for uncompressed matter. We
will refer to (4.103), which was used in reference 2, as the . pressure
and to (4.102), which has been used by Falk and Wilets,(14) as the F-W
pressure. The corresponding values of ps at zero pressure will be called
the u and F-W zero points.

In choosing between expressions for a quantity which differ only
because of the approximate nature of a calculation, it is impossible to
single out one relation as correct in any absolute and general sense.
Indeed, we can see no reliable basis for preferring either (4.102) or
(4.103) and suggest that the discrepancy between results at the two zero
points should be viewed as a reflection of the inaccuracy which is inherent
in the approximation.

However, for the specific purpose of extending the Puff-Martin
approximation to an inhomogeneous system, the choice of pressure ex-
pressions is no longer arbitrary. This fact stems from the result of
Chapter I that an inhomogeneous solution will exist only if the homogeneous
solution which acts as a boundary condition on the inhomogeneous solution
is evaluated at zero pressure. More precisely, the existence of a time-
independent inhomogeneous solution requires that the pressure be the
same throughout the volume of the system. (Thus the pressure inside the
surface must equal the pressure outside, which is zero.) This implies
that we must choose a pressure expression which directly insures (for
the approximate equations) that spatial conservation of pressure will re-
sult in a time-independent solution. We will see that this requirement
leads to a pressure expression which is based on the definition of pres-
sure in terms of the local transport of momentum, and which differs from
either the u pressure or the F-W pressure.

To derive an expression for the pressure from local transport

considerations, we begin by expressing the local momentum density in
terms of Gj:

1 lien
Zerieer

Grt) == "™ (v 90y He) Y(re)> = -

2k aylkseae

(V-V') Gy(rt; r'tt)
(4.104)



Then the time derivative of the momentum density is

a% @ (rt) :iE rl,i_r: (v-wv') [i a% +i a—at-,] Gy(rt; r't') . (4.105)
t'—=tt

To obtain an expression for the pressure, we must write (4.105) as the
negative divergence of a stress tensor; the pressure will then be the
average diagonal element of the stress tensor. By proceeding in this
manner, we may insure that spatial conservation of the pressure will be
a necessary condition for the time independence of G, (i.e., independence
of the total time t + t'), since time independence will require that (4.105)
vanish, which will, in turn, require that the stress tensor and, therefore,
the pressure be spatially constant.

The essential point is that in deriving the stress tensor we must
use equations which hold for the Puff-Martin approximation rather than
for an exact calculation, since it is the approximate G; which must be
time independent. In particular, to obtain the derivative 0G,/dt' in
(4.105) we cannot use the adjoint of equation (4.1), since the asymmetry
of our approximate G, in its unprimed and primed coordinates implies
that the adjoint of (4.1) will not be satisfied. Instead, we may use the
adjoint of (4.35):

By i
isntom tH Gr(teh) SN G (EEUIRV o= f dt" G,(tt") U(t"t') = 8(t-t') ,
9 (4.106)

since the symmetry of V; and U insures that (4.35) will imply its adjoint.

By substituting (4.35) and (4.106) into (4.105), we obtain
rhey 2m

. : 2_ 12
% ?(rt) = _% lim (V'V') {v—v Gl(tt’)') = VO Gl(tt+) S Gl(tt+) vo

= fT il [U(tt") Gy(t"tT) - Gy(tt") U(t"t+):|} - (4.107)

and the usual transformation from a time to an energy description gives

. 1= '
£ glxt) =3 17 (v-7) f 4o [%’rn—v—z A(w) - V(®) A(w) + A(w)V(co)]
y (4.108)
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We then write the time derivative of q‘/ as a negative divergence of a stress
tensor T, and divide T intoakinetic and a potential portion:

‘aa‘t?(rt) = -vT(r) = -V [T(")(r) s 1) (4.109)
where

vl = - 2 rl.ii“r(v—v')f_i‘;—‘ﬁfz'm—vle(rr-w) (4.110)
o

- M
v-rl)r) =1 lm (v-v')f -

2 ri~>r
[oe]

f(dr") [Virrrw) Alrrro) - A(rrro) V(rrrw)] . (4.111)

Equation (4.110) determines the kinetic portion of the stress
tensor to be

M
(e Ty = v')/ %A(rr‘w) (4.112)

However, the potential contribution to 0 /5t cannot be generally expressed
as a divergence. Nevertheless, for a short-range potential, it is possible
to express this contribution as a divergence in a region of local uniformity.
This may be done by integrating the potential contribution over a macro-
scopic region. We first use (4.58) to write (4.111) in terms of the scatter-
ing matrix and spectral function as

: p [
patlaie e e v;)lm %f i%f(dr{')(drz)(dri)

o

[<r11'z| T(w +w')|ry'r2> Alrzr0') Alr)'r o) - A(r,r) ®) <r{‘r2|T(w+m')]riré)A(r;rzw')J d (4 1 13)
where
1 dP : '
<r1r2]T(w)lr1ré>:f((2—))3 e‘P'(R'R)<r]tsym(w—P2/4m)]r'> . (4.114)
T

Now, since T is independent of G|, it is a spatially homogeneous function,
even for a system which is inhomogeneous. Using this fact and the sym-
metry of T and A in unprimed and primed coordinates, we obtain

v () = [ (@l )ar)arl) <ryms|T]eiel > B

(4.115)



(where the energy variables and integrations have been omitted).
If we introduce the change of variables
TN=CR Tl Re—r

(4.116)

T, =, R - ' 1} R! -

then the integral of the potential contribution over a macroscopic region
V may be written as

/;_ (dr) v-T(V)(R) =f(dR')(dr)(dr') fv(dR) <R,R' - r'|T|R - r,R' >

x [-VR + VR' - 2V,] A(R,R' - r') A(R - ,R) . (4.117)
Then, by using a second change of variables,

R=R-r R' = R' - r'
(4.118)

el
1
1
G
H
"

-T 5

and again employing the symmetry of T and A, we obtain
fv (dr) v-T(I(R) =f(di!)(d?)(d¥!)fw (dR)<R,R' - ¢'|T|R - T,R'>

x[VR +VR' +2VF] AR, R' - T') A(R-T,R) , (4.119)

where V' is the region of R such that R - T is in V. By averaging (4.117)
and (4.119) we may write the integral as two terms:

/v (@) v-T(R) =1+1 , (4.120)
which are

I= f(dR')(dr)(dr')fv(dR) <R,R'-r'|[T|R-1,R"> Vg, A(R,R'-1') A(R-1,R)

(4.121)
an

d
I' = %f(dR')(dr)(dr')f i oy (4R) KR,R!-1' |T|R=1,R'>

[VR + VR +2 V] A(R',R' - r') A(R - r, R) . (4.122)
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Now consider I. Using partial integration and the fact that Vg T =
- VRt T, we may write this integral as

1= [ (ar)ar) [ (ar) fv (dR) A(RIR' - r') AR -1, R) &

[Vp - Vg <R,R'-r!|T|R-2,R' > (4.123)

In this form the integrand is antisymmetric under the interchanges R<>R'
and r+>r', so that the portion of the integral which arises from R' in V
vanishes, and we may limit R' to the region outside V. Then, since the
integrand vanishes when R-R' is macroscopically large, we find that R
and R' are limited to a region near the surface of V. For a portion of this
region where the system has local uniformity we may write the integra-
tion as

1 ; n(R RO
fnon‘V (aR') [, (aR) = - [asn [(R-R') a(R - RY) oo AT

(4.124)
where S is the surface of V and n is a unit vector normal to the surface
in the outward direction. Thus, using the antisymmetry of the integrand,
we have

I :fds n- {— %fd(R-R')(dr)(dr')(R-R') A(R',R'-r') A(R-r, R)%

[VR'VR|]<R,R'-r'|T|R-r,R'>} . (4.125)
where the quantity in brackets is identified as the I-contribution to T(l)(R).
Next, consider I'. In this case, the vanishing of the integrand for

macroscopically large r limits the integration over V'-V to a region near
the surface of V, and for a locally uniform portion of this region we have

fV‘-V (dR) :de I TR (4.126)

so that
]
I = fds n~{z f(dR-)(dr)(dr') r<R,R'-r'|T|R-r,R'>
[VR+ Vg1 +2V,] A(R',R'-1') A(R-r,R)} , (4.127)

where the quantity in brackets is the I'-contribution to T(l)(R).



For a homogeneous system (or within a locally uniform region), A
will depend only upon the difference of its spatial coordinates, so that the
gradients VR and VR in the I'-contribution will vanish. Then, by using
partial integration on the I'-contribution, we may write the combined con-
tribution as

e Lol BB [ o e ats o) Al
T Zf_m (Zﬂ)zfd(R R')(dr)(dr') A(-r o) A(r'e)

i(R‘R')(V -Vpi)+2V,.r| x <R,R'-r'|T(w+w')|R-r,R'> , (4.128)
2 R R r

which becomes in momentum space (where 0 is the unit tensor)

W
)y = L dwdw' (*(dp)(dp') A
T 2-/:00 ads f—(ms Alp @) Alp'e)

P-P
[5+2PVPJ<T

" (p+p')2>lp- p'
tsym<w+w e | (4.129)

The substitution of equations (4.80) and (4.77) reduces this to

1 Haw ((ap) 2 o
T(l)ziéj:wﬁf(2w3 Alp @) [HEP ap:l Vip o

2

1 (dp) o)
kD p(p) [1+<p 5= | Ve, h(p)) . (4.130)
2 >/|‘p|<Pf (ZTT)3 I: 3 ap:l

Now, the partial derivative of V(p, h(p)) may be related to the total deriva-
tive of V(p) by

2 V(p, bip)) = 2 Vip. hlp)) - 55 Ve, (B 35 (p)

(4.131)

Ve - [1- )] [2+ G vie)]

Substitution of this result into (4.130) and integration by parts gives

3
(i) c5.d I i ldp) [5 ) 2 (1 ) }
T 6{67rz V(pg) +\ﬁpl<pf zap 13 (1-p(p)) — 2p(p) 1) V(p)

(4.132)
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On the other hand, the kinetic portion of the stress tensor (4.112)
for a homogeneous system is given in momentum space by

-2 (dp) p?
35 (2m)? 2m . (4.133)
B jpkpf (2m)? 2m olp) - (4.1

The pressure is then %wen by the average diagonal element of the full
stress tensor T Sl

“dw

5 <
o Pf P (dp) {1 3 1} V(p) . (4.134)
e = + o V(ps) +ﬁp|<?f Zmp p(p) (p

It is this expression, which we will call the L-T (local transport) pressure,
which must be used to obtain the zero point in the homogeneous-case
computation which provides the boundary conditions for the inhomogene-
ous case.

A computation of the u-pressure and the L-T pressure was included
in the computer program described in the last section. The numerical
results for these pressures are included in Appendix B and are shown in
Figure 9, along with the F-W pressure, which was obtained by hand com-
putation. It can be seen that the three pressure relations lead to different,

but similarly behaved, functions, with P‘u < PL-T < pF-W'
B0 T T
2.5 =
2.0
Fig. 9
1.5 .
Pressure P as a function of the Fermi momentum Pf
’1 for homogeneous nuclear matter in the Puff-Martin
':_ 1.0 approximation, using Egs. (4.102)(F-W), (4.103)(M),
:. and (4.134)(L-T). These functions must be multiplied
by a degeneracy factor of 4.
0.5
[¢]
-05(— k]
ZERO POINTS
F-W LT
-1.0 | | | |




The computer program was then iterated (using a method described
in Appendix A) to produce the values of pf and the various nuclear param-
eters at the u and L-T zero points. The functions V(p) and p(p) at these
zero points are shown in Figure 10 and tabulated in Appendix B. The im-

portant nuclear parameters are summarized in Table IV, along with the
corresponding parameters for the F-W zero point, which are quoted or
calculated from the results of Falk and Wilets.(14)
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Table IV

matter in the Puff-Martin approximation, at the
4 and local transport (L-T) zero points.

PARAMETERS OF HOMOGENEOUS NUCLEAR MATTER IN THE
PUFF-MARTIN APPROXIMATION, USING
VARIOUS ZERO POINTS

Pressure Expression Set to Zero:

w(4.103) L-T (4.134) F-W (4.102)2
Fermi momentum pg, (£7}) 1.8491 1.6865 1.575
Chemical potential u, (Mev) -14.437 -24.028 SR
Density p,P (£73) 0.09028 0.06991 0.0579
Interparticle spacing rg, (f) 0.871 0.949 1.01
Energy density £,P (Mev-f3) -1.3034 -1.1903 -1.01
Energy per particle €/p, (Mev) -14.437 =1 026 =L 3
i pressure P ;b (Mev-173) 0.0 -0.4895 -0.59
L-T pressure Py _7,P (Mev-f~3) 0.9073 0.0 -0.27 approx
F-W pressure PF—W»b (Mev-£73) 1.4 approx 0.38 approx 0.0

2Quoted or calculated from results given in reference 14.

bThese quantities must be multiplied by a degeneracy factor of 4.
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Unlike the Hartree case, the present approximation (at all three
zZero points) gives a binding energy per particle and density which are in
reasonable agreement with experimental results. It is probable that this
agreement does not imply a similar accuracy in V(p) and p(p), but the
results are at least a qualitatively valid description of nuclear matter,
and indicate that a repulsive core in the interparticle potential is probably
the primary agent in causing saturation.

IV.4 - The Effective-mass Approximation

Just as in the Hartree-Fock case, we will use an effective-mass
approximation to obtain the inhomogeneous solution. In this section, we
investigate the equivalent approximation in the homogeneous case.

As before, we wish to approximate the effective potential by an
even quadratic function of momentum, so that (4.48) may be transformed
into a local equation. It is important to notice that (4.48) involves the
function V(p w), so that it is this function, rather than V(p) = V(p,h(p)),
which must be quadratic in p.

Thus, we approximate V(pw) by
Vaplp @) = V(@) + Vy(w)p® . (4.135)

The quantities Vo(w) and V,(w) may be obtained by the least-squares pro-
cedure of equations (2.66) to (2.68). This gives

e
) 1 - F 2 ‘33 BS
v{o}(w) = 57 | (dp) e L Vo) (4.136)
2
Z B

where B is an unspecified parameter of the weight function (2.67). Sub-
stitution of (4.83) and (4.82) yields

Yoy @ - f (ap) Koy (po0thipy) ple) ,  (4.137)
2 [Pz| < pg 12}
where 2
2 5 1 P1
P> = - =
=== T 5
K{o} (pz, ) = 7r31/2 /(dp]) e F g ‘
: 1,z
g3 B
pi - (py +p,)° -
S 12Pz o <a>— P14r:z)> Plzpz S ) (4.138)




Thus, the replacement of V(p w) by Vy(w) + V,(w)p? may be carried out by
replacing (4.82) by

K(p, p2 @) = Ko(p, w) + Ky(p, w)ps
P R
2rh. .1 B3 P12 P1P3
(R
3/2/ 7 ﬁs [35 g5 3 p7
P3~ P2 (p3+Pp2)?*\| P3 - P2
SR <“ S w2 (R0

The resulting equations for the effective-mass approximation were
solved for the L-T zero point in the manner described in the previous sec-
tion. As in the Hartree case, the value of the weight parameter 3 was de-
termined by the requirement that the computed value of pf equal the value
obtained in the exact case. This led to a value of £ = 0.8931 f~!. The re-
sults for V(p) and p(p) are tabulated in Appendix B and shown in Figuare 1,
along with the corresponding exact solutions. Table V gives a comparison
of various nuclear parameters for the effective-mass and exact solutions,
and the effective-mass functions Vo(w) and Vz(w) are given in Table VI

and Figure 12.
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Fig. 11. Effective potential V(p) and momentum
distribution p(p) as functions of p/ps for
homogeneous nuclear matter in the Puff-
Martin approximation, with and without
the effective-mass approximation. In both
cases the local-transport zero point is used.
The effective-mass functions are indicated
by a tilde.
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Table V

PARAMETERS OF HOMOGENEOUS NUCLEAR MATTER IN THE
PUFF-MARTIN APPROXIMATION, USING THE LOCAL-
TRANSPORT ZERO POINT, FOR THE EXACT AND
EFFECTIVE-MASS SOLUTIONS

Exact Eff. Mass
Fermi momentum py, (£7Y) 1.6865 1.6865
Chemical potential p, (Mev) -24.028 -24.766
Density p,2 (£7*) 0.06991 0.06982
Interparticle spacing Ty, (£) 0.949 0.949
Energy density €,2 (Mev-£73) -1.1903 ~1.2323
Energy per particle e/ p, (Mev) -17.026 -17.649
| pressure P#,a (Mev-£73) -0.4895 -0.4969
L-T pressure Py _1,? (Mev-£72) 0.0 0.0

aThese quantities must be multiplied by a degeneracy factor of 4.

Table VI

ENERGY-DEPENDENT COEFFICIENTS OF THE EFFECTIVE-MASS
APPROXIMATION FOR THE EFFECTIVE POTENTIAL, IN THE
PUFF-MARTIN APPROXIMATION FOR HOMOGENEOUS
MATTER, USING THE LOCAL-TRANSPORT ZERO POINT

p () ® = h(p) (Mev) Vo(w)? (Mev) Va(w)? (Mev-£2)
1.6645 =PATA TS =159.78 26.91
T2 -39.82 -156.42 26.41
1.4161 -58.61 -151.90 25.78
1.2087 -80.30 -147.46 25.23
0.9688 =100.99 -143.75 24.83
0.7177 =SINT T -141.04 24.55
0.4778 -129.02 =1/39:32 24.39
0.2703 =135.13 -138.42 24.31
0.1138 -137.50 -138.08 24.28
0.0220 137299 =138.01 24.27

-130

aSee footnote 5.

T T

T

Fig. 12

The coefficients of the effective-mass approximation
for the energy-dependent effective potential of
homogeneous nuclear matter in the Puff-Martin
approximation (at the local-transport zero point).
The constant term V(w) and the quadratic term
Vo(w) are given as functions of w (see footnote 5).
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IV.5 - The Density Correlation Function

Once the basic functions V(p) and p(p) have been obtained for ho-
mogeneous matter, a wide variety of nuclear properties may be computed.
We will obtain results for one such property, the density correlation func-
tion, in order to reveal the characteristics of nuclear correlations in the
Puff-Martin approximation. The density correlation function f(r,{,, r;{;)
measures the probability of simultaneously finding a particle at r; with
spin and isospin {,, and a second particle at r, with spin and isospin {,.
The function may be expressed in terms of G, as

f(r; 8y, 1282) = - Ga(r, 8y t 1855 rlet+ ry Eatt) . (4.140)

The dependence on internal variables is as follows; let j be the
spin coordinate and k. the isospin coordinate. Then

e

Gt L=z
1 : ;
5 (Gst + Ger) 5 WA je kTk
G,=91 ) L (4.141)
| 5 (G + Gyt) =i Kk
1 1
i (Gss + Gyg + Ggy + Gyy) ; J1 %Jz: k) %kz ,

~

where the subscripts indicate singlet and triplet matrix elements of G,.
We also note that if X(121'2') = X(122'1'), then the matrix elements obey

R R A s X {1220]") X (121'2Y) = -X{12217)

(4.142)

S (e 2 =8 5 (102 2 TS R (102 12 = o o (122 L )

Thus, equation (4.10) becomes
G (12;121) =

Jlar1][dz"] 12;1m2") [Gy(1";1') Gy(2™;2') - eGy(1":2') Gy(2";11)]
(4.143)

where € is 1 for ss or tt-functions and -1 for ts or st-functions. Then,
using (4.12), we get

=
Gy(ry t Tat; Eithr b =f(dri’)(dr;)f dt" Q(rrat; ryrat")
0

n,.n

x [Gy(r)'t ; rtt) Gl(r;t"; r th) - €G1(ri't"; ) Gl(r;t"; rtt)] . (4.144)
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By performing the usual transformation to an energy representation
we may obtain

Ha 2 dw 1 :
f(ry-1,) = p?- € f 2—— (ryryw) f ey [Cleyrpw-i€) - Clr r,w+i€)],

(4.145)
where

C(r,r,w) = f(dr'l )dr)(dr)')(dry) A%(r ror r0) <rir3|T(w) r)'ry > Alr i rw),
(4.146)

where T is formed from a symmetrized or antisymmetrized combination of
scattering matrices for the appropriate spin-isospin state, and

Aryror20) =

f 1
fdwldwz A(r ;) Alrarw,) {1

= = tanh = ({8 = 1)
(2m) W= W - W;

)

(4.147)

and similarly for A°. However, since in the low-temperature limit A° and
T are continuous for w<2u, the effect of taking the discontinuity of C across

the real axis is simply to replace A by the corresponding spectral function,
which is (at zero temperature)

1 1475
- - + = tanh > (wy - )

&

w' @ : W ;
on A\t = W Alrerz, 5 - 0 . (4.148)

By transforming into momentum space we may reduce f to

m
_ dw f(dp) ; 2 (ap)
fr)=p?-¢ f = elP'T Alpw)h + P/ eip-r
cw 2T) (ZmP el o
P1-P2 Pz

f dp,)(dp,) /# dU)de)z Byt 2 R

27)° (2m)? 1 1

( (23} w1+a)z"2;(p1+p)z'a(pz‘p)z

(Py+p2) >

4m

"t'(cul +w, -

A(Px‘bl) A(pawy)

(4.149)
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where
<pltlp'> = <p|t|p'> - e<p|t]|-p'> s (4.150)
The substitution of (4.77) reduces this to

. 2 .

Pl <pg

P1~P;
2

(ps - pz)’)l P, - P2

t (V(P1)+ V(pz) + e >

(dp,)(dp;) <P *
3

>
@ 1 p(py) p(p2)
IPa]. | P2l< pg V(p1) + V(pz) Se=pe (py-P2* P)

(4.151)

Now consider the various combinations (4.141) of matrix elements
which appear in f. For our particular choice of a potential, which satis-
fies (4.94) and <p|t|p'> =< p|t|-p' >, the dependence of f on internal vari-
ables is considerably simplified. The second term in (4.151), which
describes exclusion effects, vanishes for unlike particles, whereas the
third term vanishes for identical particles, which are excluded from the
S-state and do not interact. For unlike particles, the combinations of the
singlet and triplet scattering matrices which formt are

spin isospin
opposite same f= ts
same opposite t =t
opposite opposite =2 (et )" (4.152)

The four correlation functions, as calculated for the local-transport
zero point (without the effective-mass approximation) are tabulated in
Table VII. They are also shown in Figure 13, along with the function

N(r) = Lf (dar') Z (el ) B (4.153)
Pdlel<x T

which gives the expected number of additional particles to be found within
the distance r of a given particle. It can be seen that there is only a 24%
probability of finding an additional particle within 0.7 fermi, which is the
approximate distance at which correlation effects other than the exclusion
principle begin to play a major role. In view of this result, it can be ex-
pected that correlations of more than two particles should be sufficiently
rare as to have only slight effects on nuclear properties.
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Table VI

DENSITY CORRELATION FUNCTION FOR HOMOGENEOUS MATTER IN THE PUFF-MARTIN
APPROXIMATION, USING THE LOCAL-TRANSPORT ZERO POINT

Correlation Function (fermi6) for:
r (fermi) spin: same opposite same opposite
isospin: same same opposite opposite
0.0 J 0.011229 0.023994 0.017612
0l 0.000028 0.008197 0.017014 0.012605
0.2 0.000110 0.005577 0.011210 0.008393
03 0.000244 0.003280 0.006326 0.004803
0.4 0.000427 0.001228 0.002151 0.001689
0.45° 0.000535 0.000272 0.000272 0.000272
0.5 0.000653 0.001733 0.002138 0.001936
0.6 0.000915 0.003545 0.004315 0.003930
07 0.001208 0.004495 0.005329 0.004912
08 0.001522 0.004985 0.005755 0.005370
0.9 0.001851 0.005220 0.005882 0.005551
1.0 0.002185 0.005315 0.005858 0.005586
12 0.002843 0.005309 0.005646 0.005478
15 0.003708 0.005166 0.005311 0.005239
20 0.004605 0.004986 0.005012 0.004999
25 0.004877 0.004915 0.004917 0.004916
3.0 0.004869 0.004894 0.004893 0.004893
35 0.004852 0.004838 0.004888 0.004388
4.0 0.004873 0.004887 0.004887 0.004887
45 0.004887 0.004887 0.004887 0.004887
ashell radius.

0.025¢ T T T 4‘3
0.020 s
N(r)—= =
0.015 =
Gy
0010
0.005

Fig. 13

Density correlation function f(r¢) and its integral
N(r) as functions of the distance r, for homogeneous
nuclear matter in the Puff-Martin approximation
(at the local-transport zero point)., The density
correlation function is given for particles with the
same spin and isospin (S-S), opposite spin and same
isospin (O-S), same spin and opposite isospin (S-O),
and opposite spin and isospin (O-0). The function
N(r) [cf. Eq. (4.153)] is the expected number of
additional particles within a radius r of a given
particle. Note that f(r) and N(r) have ordinates with
different origins.

A rather disturbing result is the large value of the unlike-particle

correlation functions within the core radius of 0.45 fermi.

This is a con-

sequence of our use of a hard shell to approximate a hard core, and rep-
resents the unphysical situation of particles bound inside the shell.
However, the large value of the correlation functions is offset by the small
size of the shell, so that N(r) is only 6.3% at the shell radius.



CHAPTER V
THE PUFF-MARTIN APPROXIMATION IN THE INHOMOGENEOUS CASE

V.1l. The Wave-function Expansion Method

In this chapter we derive the inhomogeneous equations for the Puff-
Martin approximation and describe their numerical solution. Because of
its breakdown in the Hartree case, we omit any investigation of the Thomas-
Fermi approach and turn directly to the expansion of the spectral function
in a set of wave functions.

The wave-function expansion of A, along with the appropriate wave
equation and normalization conditions, was derived in Section III.2 for a
generalized energy-dependent potential of the form which occurs in equa-
tion (4.49). As a result, these derivations are correct for the Puff-Martin
as well as the Hartree-Fock approximations, and we may use equa -
tions (3.16) to (3.50) without modification. In particular, we note that (3.32),
(3.34), and (3.35) correctly anticipate the definitions of the homogeneous-
case functions h(p), Apom(p), and p(p) given by (4.75), (4.77), and (4.78).

The remaining task is the derivation of expressions for the density,
energy density, and effective potential in terms of the partially transformed
spectral function A(przz' w). As in the Hartree approximation, the density
may be obtained by substituting (3.24) into (2.29). The resulting equation,

- (p%/2m)

Pf q
o(z) =/ prZ—Terf czl—c;)A(PrZZUJ) ) (551)
0 h(p,)-(p%/2m)

is similar to (3.51) except for the more complicated lower limit of the w-
integration. Similarly, by substituting (3.24) into (2.33), we obtain the en-
ergy density

1 -(p%/2m)

e P prdp, do lim w+2_pzr__li
C\S% o 2m ] ALY 2m " 2m OZ2?
o h(p,)-(p%/2m)

A (e Z Z L) (R (5.2)

The effective potential V(R p w) is defined by the energy-dependent
generalization of (3.7):

V<R +§,R-§,w> = f((;%)3eip-r V(Rpw) . (5.3)
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Substitution of (4.58) and (3.24) into the inverse of (5.3) gives

Pd
e - [ otz 122

'lZ(Pl‘Pz)'l' -
x{f(dr)e <Ry-Rpt3

2
-ipg,2Z Z, Z, Pr2
3 deze Pe ZA(prz: 2ot 2 Fr U

+p,)? r
taym (w +o' —(———p‘%fz >\ Ry -Rp -3 }

(5.4)

As before, to carry out the effective-mass approximation we must
fit (5.4) to a quadratic function of the form (3.41) by the method of least
squares. The procedure of equations (3.54) to (3.57) is still applicable,
and it yields

vi(zw) =) My Uj(ze) (5.5)
j

where Mij is given by (3.57) and

— dpy,dp i dw'
U{_IOL'} (Zw) = (dR ) dz, _(227513 / 5=

i
1 : L o =i
1 -p%/p? d Pz > \P1- P2
{ﬁa—wafz‘ f(dm)e /P pir xf—;’%ze Pe2®2 [ (ar) e

Pi1z

(py +p2)? T
I = - —
Sym (w+a) I R, -R, >

2
Z z Pr2
2 A(Prz' e O z——m> '

SRESTRA

(5.6)

and B is the matching parameter obtained in the homogeneous case.

Now (5.6) expresses three functions of two variables as fourfold
multiple integrals of a kernel function times the spectral function A. Un-
fortunately, even on a high-speed computer such as the IBM 704, the direct
numerical evaluation of this equation during each iteration of a self-
consistent computation would require a total of 40 to 80 hr of machine time.
To circumvent this difficulty we have used the artifice of approximating the
scattering matrix by a sum of exponential functions of energy. This approx-
imation allows (5.6) to be simplified considerably and results in nearly a
twentyfold reduction in computing time.



Specifically, using (4.95) and (4.96) we may express the scattering
matrix as

3
tsym = Zomm Oyy sing (©)Tyy sing *Oyy trip (O)Tyy trip
+ Oyc sing (@) Tyc sing + Byc trip (®)Tyc trip + Bcc (w)Tee]
(5.7)

where the combination 6cc = 6cc sing + fcc trip may be used, since 7cc is
independent of the spin state. We approximate the five theta functions by

w

it
a
Bela) % ) Cppe (5.8)
L=1

To determine the parameters in (5.8), let us choose the ay,'s arbi-
trarily and determine the C's by the method of least squares. We mini-
mize the quantities

w1 7 CLL(DZ
e e
Wo L=1

where the 6's are given by (4.99) and (4.100). This leads to the result

7
S g g (5.10)
=il
where
P Oy
Ve = f dw e ™" g (w) . (5.11)
W

0

and T~ ! is the inverse of the matrix T with elements

TmL . ‘K(Dl il e(a,m-}-aL)a) s —] [e(am +Q,LXDI _e(am+aL)(.Uo]
amtar
9 ((5.12)
The IBM 704 was used to calculate the coefficients Cyy, by this pro-
cedure. The region of matching was chosen to bew, = -500 Mev to
®, = -30 Mev. The chosen ay 's and the calculated C's are given in

Table VIII.
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Table VIII

PARAMETERS OF EXPONENTIAL APPROXIMATION
FOR THE SCATTERING MATRIX2a

L a]_,(MeV_l) nys(f_B) nyt(f_s) Cycs(f_z) Cyct(f'z) Ceclf™)
1 0 -45.911 -139.633 6.7168 16.8971 6.6573
2 1/320 -22.324 -136.417 11,3835 38.067 -24.531

3 1/160 5.2630 18.7878 -4.1329 -7.6052 155 318813
4 1/80 -19.0556 | -114.409 8130 T 29.783 -16.0706
5) 1/40 -12.6734 | -126.036 3.6526 28.581 -4.4934
6 1/20 -25.249 -215.04 9.1383 52.000 -18.2438
7 1/10 -32.711 -550.95 10.4509 128,249 -30.512

2See equations (5.7) and (5.8).

In order to estimate the accuracy of this approximation, a table of
the exact and approximate theta functions, and the absolute and relative
errors, was computed for values of wfrom -500 Mev to -30 Mev at inter-
vals of about 10 Mev. For the functions 6 y sing’ ny trip’ ch sing’ and
Byc trips the largest relative error was less than 0.08 per cent. Since
6cc has a zero in the matching region, its maximum relative error was
infinite, but the largest absolute error in the interval was less than one per
cent of its value at -500 Mev and 0.1 per cent of its value at -30 Mev.

An attempt was made to improve the approximation by optimizing
the choice of the exponents a1, by means of Prony's method. However, the
method failed to give consistent results, presumably because large varia-
tions in the aj 's had little effect on the accuracy of the matching. (Mathe-
matically, this would lead to the inversion of a nearly singular matrix.)

To apply this exponential approximation to our expressions for V,
we substitute (5.7) and (5.8) into (5.5) and (5.6), obtaining

7 [o0]
or,Ww Pr2dp
Veoy(Zw) = ) &L / rZ = fdzzdzz K1 o (Z222Pr2)
AL L=1 0 m T
Il
Il
'ud(_L)' 1
e (04 w 2
xf o B¢ A(prz,z T +2—Z+ZZ-_,w-_Er)
Zm
(&1

where



3 s 5/2 - pir/B? - piz/p?
Ky, _OL (Z z,py2) = W dedY f(dpl) e-pl/ﬁ = 1/[32 t P%r/ﬁ4
||} - 1/p* + 2piz/B*

'i(Pl -p2)r -Oi(Pl +pz)?
dp,, -ipz.z; 2 4m
Xf—zﬂ e ﬁdr)e Z CkLe
k
r r
L H+toiTiB-—
z' k’R z” (5.14)

and the index k ranges over the five subscripts of the 6's and the T7's. To
clarify the process of computation, we expand (5.13) into several steps:

Veoy(Zaw) = Y TP 0,y (2) (5.15)
W=
Il Il
where
Pf p.dp,
QroyL(2) :/ —n Cron(Zpr) (5.16)
7
Il Il
G2 )l = de'dz Ki,r0y(Z2'zp,) BL(Z +2Z'2zpy) : (5.17)
s i
Il Il
and

W M dw o1,® < z z p%
BL(Zzpr)_‘/;1 e Apr,Z+Z,Z-2,cu-Zm

v 2
A doore () 2 Pr d Pr)
f 2n® W(Z*“Z'Pr’ w'zm>¢(z it
h(pr

(5.18)
The area of the py, w-integration has been limited to take into account the
lower bound in the energy spectrum of the wave functions.

With a little manipulation all but two of the integrations in (5.14)
may be performed analytically. The result may be written as

Ky i(Z2z,pr,) = Z MK j(Z 2pr,) (5.19)
f]

where
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N /e S
{il
Io(s)

(p%, +p2)1o(s) - 2prPrali(s)p  LiLroy(Z z2Pr)
] Ip(rsz) ' e {i} o Bi= PrPrz((Z/ﬁZ)+(OLL/m)) s
g i
(5.20)
and
1 . o ;
_(Bf4)(z, - 2)?- -
Lpcoy(Zzzpr) = M fdz 1 Al )z, - 2)2-(m/ay,)(z, - (z/2))
{ﬁ} ol (B/2)-(6/4) (22 - 2)*
X% CkL<F, 2+ |n ?, z-2> i (torag £0)

il

Lioy(22epy) = 1‘2}? : e zk CkL <%'Z+zz 'rk‘gz£'2_z;> :
{ﬁ} (g%/2)-(8*/2)(23)
(for ap, = 0)
(5.21)

The expression of the form < prz IT[p'rz' >in (5.21) indicates a two-
dimensional Fourier transform:

dxdydx'dy' -ipy- ipl-rl
C Drz|T|przi> :/——X (’:'27:;2 A el >ebrtr

This may be evaluated by substituting (4.97). Let

o= /(oUf = p% =R/ o2t 2

Then

it aal)e'dlz‘le'allzll (yy)

-a gtz
<ppz| Tl ppz'> = { 08 e M2l oy VR (e P 5 (o VTR ()

Jelpr Jri—zz) Jc(ph ré-z'?) (cc)

where Jc is a Bessel function which is cut off as its argument goes
imaginary

(5.22)

(5.23)

(5.24)
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0 ; PSS T, (5.25)

V.2. Numerical Computation

We now turn to the numerical solution of the inhomogeneous-case
equations in the Puff-Martin approximation. These equations may be
treated by an iterative procedure similar to that described in SectionIII.3
for the Hartree case. The major change is the increased complexity of the
integrations which produce the effective potential from the wave functions.

For numerical calculation it is necessary to approximate the inte-
gration in (5.17) by weighted sum of By, (Zzp,) over a set of equally spaced
points in Z and z. Appendix A gives the derivation of a set of coefficients
¥ such that

C{E}L(Z Pr)
1]

f dz'dz KL{ } (2'zp,) By, (Z+2'zpr)
"

Z Z ¥m ,mz{O} L(pr)

m;=0 m,=0

[B1,(Z + myh;, m;h;, pr) + B1(Z - myh;, mzh;,py)]
(5.26)

The calculation of the Y-coefficients was performed with the IBM 704. In
about 10 hr, the machine produced and stored on magnetic tape a table of
273 44 x 55 matrices ‘I’mlmz, or over 660,000 numbers.

The computer program for the iterative solution differed in several
minor respects from that described in Section III.3. In order to save ma-
chine time, the effective potential was computed for a rough mesh spacing,
and the intermediate points were obtained by interpolation. Also, the ex-
trapolation of the effective potential into the vacuum region was done by
fitting an exponential of undetermined slope to the first two known points
(rather than fitting an exponential of predetermined slope to one point).

Specifically, the program functioned in the following manner: Dur-

ing each iteration the computer begins with a table of Q oy 1.(Z) for a Z-
i

I
range of 10 fermis in intervals of § fermi. It then performs the following
calculations:

1) For a particular value of w, a table of V{o (zw) is computed
i}
0]

from the Q table by means of (5.15). The table of V is extended on each
side by about 8 fermis. In the right-hand region, these functions are set
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equal to their homogeneous-case values. On the left, they are extended by
fitting an exponential ‘:le_cZZ to the first two tabulated values.

2) The various derivatives and combinations of the V's which
appear in (3.45) are calculated, and these functions are interpolated to
give a table with a spacing of {3 fermi.

3) For given values of p; and w, a table of the wave function
¢(zpr w-(pzr/Zm)) is computed in the left-hand extension by assuming
that the potential in (3.45) is an exponential.

4) The table of ¢ is computed for the main region of 10 fermis
by point-to-point solution of (3.45), with the use of a modified Noumerov
method with a mesh spacing of 13 fermi.

5) The table of ¢ is extended into the right-hand region by fitting
a sine function to the last two points in the main region, and these two points
are also used to determine the normalization. The entire wave function is
normalized according to (3.49), and (3.44) is used to obtain ¥ (z pr w-(pzr/Zm))‘
This function is tabulated for a mesh spacing of ¢ fermi.

6) Steps 1) to 5) are repeated over various values of w, with the
number of values ranging from 4 to 28, depending upon the value of py.

7) The resulting table of wave functions is integrated over  to
obtain the functions B} (Z zpy) defined by (5.18) for a spacing of % fermi
in Z and—; fermi in z.

8) The functions C (g L(Z py) are obtained by summing the products
AL

I
of B and the Y-coefficients as’in (5.26). In order to increase speed, this
summation is truncated to exclude values of ¥m;m, smaller in magnitude

than 107* Max[‘{’mlm2|. The C's are computed for a mesh spacing of
5 fermi.

9) Steps 1) to 8) are repeated for 13 values of Pr, and a new table
of Q [} L(Z) is obtained by integrating the C's as in (5.16). In a similar
]

manner, (5.1) and (5.2) are used to obtain the density and energy density.

The computation was performed with the interparticle potential

parameters in (4.101) and the homogeneous-case effective-mass results
for the local-transport zero point.

After ten iterations, the result of each iteration was identical with
the previous result, except for a slight displacement along the Z axis
towards the vacuum side. This displacement was about = fermi, which is

small enough to be attributed to numerical errors in the spatial boundary
conditions.
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The resulting effective potential, after the tenth iteration, is shown

Figures 14 and 15, and tabulated in
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Fig. 15

The quadraticterms V) (z w) and V) (2 w) of the
effective-mass approximation for the effective
potential acrossa plane surface of nuclear mat-
ter in the Puff-Martin approximation. These
terms are given as functions of z for discrete
w. For clarity only the curves for w = -15 and
-165 Mev are continued into the vacuum region.
The two terms V,; and V), which are the com-
ponents of the momentum perpendicular and par-
allel tothe Z axis, are equal, towithin the limited
accuracy of the graph, exceptin the shoulder re-
gions, where a small difference is indicated by
splitting the curves. See footnote 5.

Appendix C. Figure 16 gives the

Fig. 14

The momentum-independent term Vo(z w) of the
effective-mass approximation for the effective
potential across a plane surface of nuclear mat-
ter in the Puff-Martin approximation. The quan-
tity is given as a function of z for discrete w.
See footnote 5.
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corresponding results for the parti-
° cle and energy densities, which are

also tabulated in Appendix C. As in

the Hartree case, the functions V)

and V|| are nearly equal, so that the
—o2s effective potential is nearly isotrop-
ic. In contrast with the Hartree re-
sults, however, the curves are

0075

smooth, except for slight variations
in the density, and there are no sig-
nificant oscillations inside the edge.
The surface thickness is 2.33 fermis,
which may be compared with the ex-
—ors perimental value of 2.5 + 0.2 fer-
mis.(10) The more important
numerical methods which were used
are discussed in Appendix A.

VACUUM INTERIOR

o
€(2),Mev-t3 3

00I5—
The results for the particle
and energy densities may also be
used to compute the surface-energy
term in the Weizsdcker semi-
empirical mass formula. Consider
Fig. 16. The particle densityp(z) and the a large spherical nucleus; its parti-
energy density €(z) across a plane cle and energy densities, as functions
surfacejofnuclearmatteriinithe of radial distance, should possess the
Puff-Martin approximation. Both .
p and € must be multiplied by a same shape and height as our calcu-
degeneracy factor of 4. lated p(z) and €(z). Thus, the total
number of particles and energy of

-1.25

the nucleus should be

N

4 fm r¥dr4p(ry - 1) (5.27
0 0 2 :

and

E

1]

[oe]
4nfo r?dr4e(ry-r) (5.28)

where the degeneracy factor of four has been inserted, and r, is a param-
eter determining the nuclear size. Then

= ;E:;N+lévrfo £ 2idrls (ot hn) ER (5.29)

where



p(z) (5.30)

is a function which is nonzero only in a region near the surface. Thus, for
a sufficiently large nucleus, the integration in equation (5.29) may be ex-
tended to negative r, and E may be rewritten as

I

E MN - léﬂfoo (rg - 2z)2dz s(z)

p(e) &
= % N + 167 rg f_zdz s(z) +0(ro) . (5.31)

On the other hand,

N = 1g—ﬂp(m)ra +0(r2) (5.32)
so that

[167?%5]2/3 = r3 + 0(r,) . (5.33)
Thus

E = Zé—zg N + lé‘n[g%] = I: dz s(z) + 0(r,) . (5.34)

A comparison with the Weizsicker expansion E = uN +ugN%3 determines
the surface energy ug to be

_ 3 2/3 0 6(00)
e 1677[—16”[3(00)] L dz [e<z> -mp(Z)] : (5.35)

A computation of the surface energy from the results of our calcu-
lation gives ug = 18.79 Mev, which is in reasonable agreement with the
empirical value of 17.804 Mev obtained by Green. 8) Thus our calculation

leads to reasonable values for both the surface thickness and surface energy.
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APPENDIX A
NUMERICAL METHODS

A.l. Numerical Solution of the Schroedinger Equation

The one-dimensional Schroedinger equation may be written as
#2)z) = glz)p(z) . (A1)

This equation may be solved numerically by expanding the second derivative
in terms of the difference operators 6™ and using the resulting equations to
determine ¢(z) for a given z in terms of ¢(z) for smaller z. Such a pro-
cedure gives a direct method of solution if the boundary conditions (exclu-
sive of normalization) can be expressed at a single point.

Specifically, suppose that we have a table of g(z) for a sequence of
equally spaced points at intervals of length h. Given the initial conditions
on ¢(z) at z,, we wish to obtain a similar table of ¢(z) for z>z,. Let

Gn = #(zo +nh) H gn = g(zo +nh) . (A.2)

A Taylor series expansion of the second central difference of ¢, contains
only even derivatives:

%y = $n+y 2% t Oy,

= Al e b O [
§ 24 +1zh¢’(n * 360

10 SR ST () +
RIS+ o hf¢ oS (A.3)
If we ignore all right-hand terms beyond the first, and substitute (A.1), we
obtain an approximate equation, accurate to order h?, giving ¢, +, in terms
of ¢ and ¢, _ v

B +1 = 20, '¢n -1 +h2gn¢n & (A.4)

A better approximation, obtained by Noumerov's method, is
accurate to order h*. Let

h? h?
Yn = Oy - 1_2¢(;)= I: Fries gn]‘% . (A.5)

The function y, has been chosen so that the expansion of 62yn does not con-
tain an h* term. We have
h2

1 11
o e 5z¢>(§)= hz¢(rf)' 220 h6¢(zf) ~ 50480 h8¢(fl)~~ R (AT )
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By dropping the terms of order h® and higher, and substituting (A.1) and
(A.5), we obtain Noumerov's approximation:

hz
~ 2 o g
Yn+1 S 2¥qVnoy tE8nbn = Vot 2y, C (A.7)

1 -I_Zgn

The accuracy of this method can be improved further by including
a correction which takes into account the hé term in (A.6). The procedure
described here is a modification of a method developed by Rubenstein,
Huse, and Machlup.(lé) The general form of the expansion (A3

2 4
i +_l_h4_<_i_

At s
dz2 12 dz4 ’ o)

6Z:h2

may be squared to obtain an expansion of 54;

é4=h4-i4- B a°

2L (A.9)
dz4 6 dzé
Now, let b_z.
K h2 (2) 5 hZ X 12 €n
LT 2% oD 8nPn = .l—hz_— Yn : (a.10)
172 o

By solving (A.9) for the operator he d‘*/dz4 and applying the result to u , we
obtain an expression for the sixth-order term in (A.6):

IRy ()0 i 4 1
240h®n)—206un-mh8¢(§)—... . ((ARIS10)

Unfortunately, the fourth central difference of u, contains u, 4+, and
cannot be evaluated directly. However, to order hs,
—1—h8¢(3) = KLt = g6 = 54 4 4
i = ke = o - L + 6% (A.12)

agl 0l n-2

This gives a usabl i i 4 i 1 i
o l)g. 0t oy e apprc.)mmatu?n for é ), which may be. substituted into
en the result is substituted into (A.6), we obtain

L (A.13)

26% - 5% =
un -y = 8%un -2 - FoaEs n

2 =~ 1

G5 T 2, 2 26[
8

We drop the 'h term, expand the central differences, and use (A.10) to ex-

press up +, in terms of y;, 4,. This gives the approximation
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T 9 4 7
1 + — = = - = —
10 o2 yn+l Zyn Ve +12 30 u, 5 B 10 “n-2
e
12 gn+1

where the u, are obtained from the s by (A.10).

In order to apply this method, the value of the wave function at five
consecutive points must first be obtained from the initial conditions. In the
inhomogeneous -case computations described in Chapters III and V, these

values were obtained from an approximate analytic solution in the near-
vacuum region.

A.2. Spatial Integration of the Wave Functions

In carrying out the Puff-Martin inhomogeneous-case computation of
Chapter V, we must perform the double spatial integration (5.17) by means
of an integration formula of the form (5.26), i.e., by a summation over a set
of equally spaced points in Z and z. The essential problem is the derivation
of such a formula for the subsidiary kernel function L defined by (5.21)ite s,

1

1={dzds L (Z 2 py) By(Zo+2Z,2,pp, )

= >y ® mimyroy LPr) Baym LZomibimabeps,) (A.15)
m; mp AL
I
where
Boym 1(Zo Z 2 pr)) = BL(Zo+Z,2,p;,) + BL(Z0-Z,2,p;,) . (A.16)

since (5.19) and (5.20) give directly

1
1  aL) 2 A
|5+ =)k po =+ =])p
1 <2 m) & ( 2 4m) =
‘ymlmz{i}L(pH) o z Mj; S e s f prdpr e B

i B o
Ii(s) j=0

x4 (Pf2 + P2) Lo(s) - 2prprali(s)  :  j=4 ®m,m,{j} L(Pr)
I j =1 2 T
o(s) g 5=PrPrz('ﬁ_z' b ;)

(A.17)
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The integration in (A.15) may be simplified by introducing the function

hL; 5 1
Ty 1 =0 (z-z')l Zz' )
T ¢ e fdz‘ gt g2 2{e L BsymL(Z° z'Prz
= T'T(y—L ) (if ap 7 0)
E{i}]ﬂ (ZoZZPrz)= . ) Bzzz
“ ;;z Bt ,( “ BsymL(ZoZZPrz) (if ay, = 0),
a4
(A.18)
where
4, 9]™ g m p?
n o= |l=+= ;0. = B+ — ; =1 +—
L [Bz m] L 7 or 7L 40,

In terms of E, the integration in (A.15) reduces to

6pm Br
= b == 44
Ek e dedz <. Z+z

B =
T ’ S Z-z> B{_j’_}L(Z"’ Z, Y12, Pp,)

I (A.19)

Now, suppose that we know the values of E(ZOZ zprz) at the same lattice
points in Z and z at which we know the values of B, i.e., with a spacing of
h, in Z and h, in z. To perform the integration in (A.19), we might approxi-
mate B by means of Lagrangian interpolation in Z and z, using 2n+l points
in each dimension:

n
f(z) = Z e <h£ - mo> f ((m +m0)h> (and similarly in z),

S (A.20)
where i
n (X'k)
=S (x) = k:_n(rﬂ—‘k) 5 (A.Z])
k%m

However, this approximation is only good when Z and z are in the interior
of the rectangle formed by the (2n+1)? lattice points used in the interpola -
tion. When Z (or z) is outside this rectangle, the interpolation becomes an
extrapolation and the error increases as the 2n+l power of Z (or z). Un-
fortunately, the exponential decay of T, and 7. in Z *z is not sufficient
to make the integral of this error negligible in the extrapolation region.
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To circumvent this difficulty, we have used the device of varying the
choice of interpolation points so that the central point of the interpolation
rectangle is always the lattice point nearest to the point Z,z. This is
equivalent to choosing m, in (A.20) to be the integer whose value is closest
to Z/h In this method, a large number of lattice points are involved in
the approximate integration, but the allowable lattice spacing is unusually
large.

Application of this approximation to B gives
Z Z n z z
B, Gteend 2 0 O i (2 <o(2) h(Eer(2
{-ILI} ( 2pp,) = L ( r(h1)> Lmz(h2 r(hz))

m;=-n m,=-n
= Z
B{i}L Z.o» (ml bt (h_1)> h, ,
Il (a.22)

where r(x) is the integer nearest to x. The absolute value of the arguments
on the right-hand side have been introduced to take advantage of the symmetry
of B in Z and z. Substitution of (A.22) into (A.19) gives

m;=0 m,=0

Z Z ¢m,m2L (p,) —{_L L(Zovmlhl!mzhl’prz) ) (A.23)
H}

where
n n
_ 6B Z Z B L e
d’m)mzL(pr) 2 ?z CkL C Zuzis Z A i 2 =2
k m;=-n my=-n
Yz Y1,z
n iz n (L ( L )
——r— I STl 6
i (33) (a0
r(Tl) +m;|,m, x| hy + my|,m;

(A.24)

The choice of the mesh spacing and number of interpolation points may
be determined by examining the maximum error of the interpolation formula
(A.ZZ) The computation described in Chapter V is made with the values
h, = ferm1, hy =5 3 fermi, and n = 10. An investigation of the error for these
values gives an estlmate of the relative error magnitude of 2 x 1077 if B is
derived from wave functions with characteristic momenta less than
D= 285 RSN oD = 3 f7!, the relative error magnitude is about 10~7.

We are still faced with the problem of integrating (A.24) numerically.
At first sight, this task appears to be complicated by the discontinuities of
the integrand. However, since (A.24) is only an intermediate step in the
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integration of (A.19), it is sufficient to use any integration method which is
accurate for evaluating (A.19), even though it may be highly inaccurate for
(A.24) itself. On the other hand, knowledge of the integrand in (A.24) is not
limited to the lattice points, so that Gaussian methods with unequally spaced
points may be used. In practice, the integration was performed in the var-
iables Z, = Z+z and Z, = Z -z by means of 8-point Gauss-Legendre quadra-
ture and 25-point Gauss-Laguerre quadrature (depending on the particular
form of Tk). Furthermore, the integration points for which 7, was less

than 1077 of its maximum were discarded. This restriction limits the non-
zero values of ¢m1mz to the region m; = 0 to 43 and m, = 0 to 34.

We must now express the values of B at the lattice points in terms
of the values of Bg Let g, 1, be coefficients such that

Y
== -op 22 x n
/?TELfdze f(z) = f g, f(mh,y) . (A.25)
m= -ng
fihen? L
n
— o = 7—2 %h% g
B_OL i, (Zo,mlhl,mzhz, prz> = e L x Z gm3L
Il s

1

1 2
L

m, +ms | hy, Prz) )
4
(A.26)

where the absolute value is again introduced to take advantage of the sym-
metry of Bsym' The substitution of (A.26) and (A.23) into (A.15) gives

1,
" -— m}h} ng
i
Pmym, 0L (pr) = Z ¢m1m4L(pr) < 2 Z &m,L
1 my =0 ms;=-n
I S

1

1 2 .

%2-%4 [(]-%>m4+m3} h% 5|m3+m4|,m2
(A.27)

If n% =20, then cbmlmz will be nonzero only in the region m; = 0 to 43,
m, = 0 to 54, and the summation in (A.15) may be restricted to these values.
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The choice of the coefficients g€m1, depends upon the value of o1, (and
therefore OLL). For a1, = 0, the value of gy Isinfiniteand s ‘5m,0' On
the other hand, for small ¢ we may use the simple approximation

oo]

o i _Omzhz
/ dz e Wiz = z f(mh,) e 2 . (A.28)
=00 In=-co

E. T. Goodwin(17) has shown that the error in this approximation decreases
rapidly as 0 — 0, and an examination of the error term which he obtains
shows that the relative error in using this method will have a magnitude of
less than 107% when 0 = 2.75. To limit the extent of the summation we dis-
card the terms for which g, 1, < 10-9g0L (for all L.). The worst case occurs

for the smallest value or, = 0.441 and leads to ng = 20.

1]

In the intermediate range, in which 0 > 2.75 but is still finite, we
may approximate f(z) by Lagrangian interpolation, using (A.20) with mg = 0.
This gives

g
fdz e'ozZ f(z) Z f(mh,) /dz e~ 02° L:rg (-}%) .(A.29)

IR

Experimental trials with various test functions established that ng = 11 is
sufficient in this region.

The numerical calculation of the Y-coefficients was performed in
two steps. First, a table of the 44x35 arrays ‘bmlmz was computed for
7 values of ay, and 12 values of p,.. Then, from this table a second table of
the 44x55x3 arrays ¥Ym;m, oy Was computed for 7 values of ap, and
It

i}
13 values of py,. To evaluate the integral over py in (A.17), 12-point Gauss-
Laguerre quadrature was used. The two computations required 7 and 3 hr
of machine time, respectively.

In the Hartree-Fock computation described in Chapter III the in-
tegration of the product of the kernel and spectral functions reduces to a
single integral of the spectral function times a Gaussian interparticle
potential. In this calculation the approximation (A.28) was used.

A.3. Energy and Momentum Integrations

In the inhomogeneous-case computations for both the Hartree-Fock
and the Puff-Martin approximations, the density, energy density, and
effective potential are expressed as integrals of the spectral function (or
the product of the spectral function and the kernel function) over the energy"
® and the perpendicular momentum pr, as in (5.1), (5.2), (5.16), and (5.18).
In the Puff-Martin case, the integrals are complicated by the presence
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of the exponential functions e*L® The choice of a numerical procedure

for these integrations is quite critical, since the time required by the entire
computation is proportional to the number of points w,py at which the spec-
tral function must be evaluated.

This choice is determined primarily by the strong exponential and
sinusoidal behavior of the spectral function at the two extremes of the
spatial interval over which the density and effective potential must be com-
puted. This behavior may be roughly approximated by

r

2m

(A.30)

o

2 k?2e?KZ; left-hand region
A(Z ZISprRay= ) =
sin’kZ, right-hand region,

where Z, (negative) and Z, (positive) are the approximate distances from
the left and right end-points of the spatial interval to the edge of the nuclear
surface, and

W - Vohom (@) ) ,
k = e i K = [-2mw + p2] : (A.31)

Vzhom (@) + 2

The energy integration may be expressed as

do agw . 2
J(py) = o L A(Z Z' p,w- %) - (A.32)
h(py)

We must approximate this integral by a weighted sum of the values of A for
a finite set of values of w. In addition, the choice of W-values must be in-
dependent of aj,. Unfortunately, since the factor e“L%® varies from a con-
stant for ar, = 0 to a strongly decaying function for ay, = 0.1, a choice of
W-points which is optimum for one value of a1, will be poor for other values.
The only reasonable procedure is to approximate kA by interpolation (ob-
taining the appropriate weights by integrating the interpolation coefficients)
and to choose the W-points to minimize the maximum interpolation error
over the region of integration.

' Thus, we are led to use Chebyshev interpolation. Specifically, let
us interpolate f = kA as a function of the variable x(w) in the interval
%0 = 2(b(p)) to %, = x(u):
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where
6. = —cos |2 )
i S o /" A.3
and
n
s -s:
L% (s) = H SR (A.35)
B si-s~
Jj=1 J
j#

In the region x; = x =< x, the interpolation error is

2 | x1=%0 | ™
= —
n! 4

where xo = £ = x;.

a"£(¢)

dx™

E(x) (A.36)

Now, consider the behavior of the nth-order derivative for the two
test functions in (A.30). If x(w) is slowly varying compared with the factors

e2KZo and sin?kZ,, then the dominant term in the derivative will be

dK\" )
(220 E) f left-hand region
dnf (A.37)

dx?

ZZIK

|< dk )n £ ‘ right-hand region

The maximum of the error expression (A.36) will involve the maximum of
(A.37), so that we wish to minimize the variation of (A.37) over the integra-
tion region. If we were concerned with only one of the two cases in (A.37),
we would choose x = K or x = k. To deal with both cases, it is necessary to

make some compromise between these extremes such that and

iy i
dx

are both bounded, but neither quantity falls unnecessarily far below

dk
|Zzl_dx
the bound. A reasonable choice is that x(w) satisfy

dx? = (2Z,dk)? + (2Z,dK)? . (A.38)

In the region of integration the function K(k) is closely approximated
by

1
K = [6.66-0.92p% -1.92Kk?]* . (A.39)
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In general, (A.38) and (A.39) determine x to be an elliptic function of k.
However, if we choose the special case | Z;| = +/1.92 | Z, |, the elliptic
function reduces to a spherical function:

v1.92k

x = 2|2y |Kp arc sin R, ; (A.40)

where

iy = S0 5 o e i) o (A.41)

The choice of ’ZI I = MR || @y | e essentially a weighting of the two
test cases in determining the optimum integration method, and it is usable
since Zy and Z, are roughly estimated quantities of about the same magnitude.

The variable k ranges from 0 to .\/p% - pi. over the range of integra-

tion in (A22)) Thezcfore, ' P
/0P a/p%-pi_

x0 =0 ;  x =2|Zy|Karc sin K,

(A.42)

If we substitute (A.40) and (A.42) into the interpolation approximation (A.33)
for kA and substitute the result into (A.32), we obtain

n
N P}
I(p,) = Z HY (o, pr)A<Z zvprwi_?r) , (A.43)
1=1
where
X1
he=lon ) e = (si+1)‘ , (A.44)
and
i ® ar w
H.(a: p.) = kin,) dw L7 1 n [ 2x(w)
iL — 5 Li (/= -
i o i ST e T iLq = 1 : (A.45)
h(p,)

The integration over the perpendicular momentum P, is simply
LF
Prdp,.
2T

J(p,) (A.46)

(In forming the effective potential the integrand also involves the kernel K
but this is slowly varying in Pr as compared with J and may be ignored in
determining the integration method.) This integral may be treated in a
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manner similar to the energy integral. To obtain test functions, the integral
(A.32) of each of the functions in (A.30) may be roughly approximated by a
linear combination of two terms with exponential (or sinusoidal) behavior
corresponding to the values of K (or k) at the end points of the energy integra-
tion, w = h(pr) and W =U. This leads to four test functions, one of which

[corresponding tok = 0 when w = h(pr)] is a trivial constant. The remain-
ing three are

2KoZ
it left-hand region, w = h(p,)
2K
J(pr) o eSS left-hand region, w= p
sin 2kZ, right-hand region, w = u : (A.47)
where
Ko = f-2mVpom(py) 5 Ky = ,f-2mp+p: k= /p}-pt

(A.48)

Let us integrate J as a function of the variable q = q(pr). In the
dK dK
o] [oncs

are all bounded, and kept as close to the bound as possible.

same manner as before, q should be chosen so that

’

and

- dk
Tdq
If we substitute (A.39) into (A.48), we find that | dK, | = 0.92 | dK, |, so that

the K, case may be ignored and q chosen as a compromise between q = K,
and q = k. As before, we choose

dq? = (2Z0dK,)? + (22,dk)? (A.49)

With the substitution of (A.48) and (A.39), we obtain an elliptic function

which degenerates into a circular function for | Z; | = | Zo |. In this case,
q = 2[Zy| Koo azc sin =, (A.50)
Koo
where

Ko = /-2mp + ptz. : (A.51)

As p,. goes from ps to zero, k = ,/p%-pi goes from zero to pg, and q goes
from
1%

G = @ @G s B || 0 O e e (A.52)
Koo

In carrying out the integration over q, we are no longer faced with
a wide variety of integrals for different ay,. As a result, we may optimize
the integration error itself, rather than the interpolation error, by using
Gauss-Legendre quadrature. The resulting approximation is
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n -_—
S z k¢ |2
I = ——— Hyk; [1 -_L | 7 ( pz-k%) , (A.53)
87 |2y | = )7 K3, £5
where
q, (xJ'+]) (
.= i , A.54)
kJ Kpo sin [Z ,Zol Koo >

and x. and H, are the abscissas and weights for Gauss-Legendre quadrature
over %he interval -1 to +1.

In the Puff-Martin computation these methods were used with
13 points for the p-integration and 4 to 28 points (depending on the integra-
tion range) for the w-integration. The accuracy was tested by applying the
method (with a varying number of points) to the trial function (A.30) and to
the computation of the density p(Z) from the initial estimate for the effective
potential. The largest relative errors were about 107>,

This method was not used for the Hartree -Fock calculation. In
that case, Gauss-Legendre quadrature was used in the variables
/w-V,-V,pi and /p;-pi .

A.4. Methods for the Homogeneous Puff-Martin Computation

In performing the homogeneous-case computation for the Puff-
Martin approximation, it is necessary to obtain the solutions V(p) and
p(p) of the simultaneous equations (4.86) and (4.87). This is done by itera-
tion of a multidimensional Newton-Raphson procedure.

Let xk and H; be abscissas and weights for n-point Gauss-
Legendre quadrature over the interval from -1 to +1. (Ten points were used
in the computation described in Chapter IV.) Then the momentum integra-
tions in (4.86) and (4.87) may be approximated by

Pt n
/ (dp) £(p) = 47:/ p’dp f(p) = Z B, e )05 (A.55)
0 k=1
|P[<Pg
where
Pf =
D= > (xk+l) ; IZGi = Ps Hy pf( . (A.56)

Using this approximation, (4.86) and (4.87) may be written as a set of 2n
equations for the 2n values of V and p at the integration points:



n
g 7}
ITf = -Z e R ) =
k k j Pk Pj» —5m +Vk+vj f 0 (A.57)
j=t
and
5 2 2
o Pk +pt
G, = I-Z e ) K e v 14l ) T
k Pk i 30K PrPy —5m t Vit V) | -1 =0, (AS58)
j=1
where
Yo Vi) s py = PR ) (A.59)

The independent variables Wiks Py may be considered as a 2n-
dimensional vector:

V= [V Vol o] (A.60)

Similarly, the dependenf variables Fk, Gk may be combined into

G [0y B By s o

(A.61)

ol

In this formalism, (AA57) and (A.58) become the vector equation

F¥) =0 . (A.62)

Now let ;;n be a trial solution of (A.62). To find a better solution
\_;n+1’ we expand F in (A.62) in a Taylor series about v, retaining the first
two terms. The solution v, 4, is taken to be the solution of the resulting
approximate equation:

i:(:n) + %_V_n) cVan -Vl =0 . (A.63)
v

This is a 2n-dimensional linear equation involving the 2n-by-2n ma-
=
trix SF/BV . By inverting this matrix, we obtain

3F(vy) | T L.
Vo =y - [ ( n)} - Flvy) - (A.64)

n+1 OV

The iteration of (A.64) produces the desired values of V and p.
Since the error of the Taylor approximation decreases as the square of the
difference vnﬂ -_\;n, the convergence is very rapid. The derivative of T is
given by differentiation of (A.57) and (A.58), and involves the function K and
its first two derivatives with respect to energy.

107
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This method yields a solution of (4.86) and (4.87) for a particular
value of Py In the computations of Section IV.3, the method is iterated to
obtain a solution for a particular zero point. This is done in the following
manner: When V and p have been obtained for a given py, they are used
to compute the pressure P(pg) (using whichever pressure expression is of
interest). After this function has been computed at two points, Pn = P(pfn)
and P, _, = P(pg,_,), it may be approximated by a linear function passing
through these points:

1n

Py, 1Pfn~PnPin -y * (Pn-Pn-)pf : (A.65)

P(pg)
Pt Pfn "Pfn -1

A new value of p¢ is then obtained by solving P(pf) = 0 in this linear
approximation;

Brair (Fanp s PRR e E B e e (A.66)

and then evaluating the pressure at the new pg. The repetition of this pro-
cedure converges upon a value of ps for which P(pf) = 0. At each stage the
two points used in (A.66) are chosen to be the last point computed and one
of the two points used in the previous stage (whichever one is nearer to the
last point computed).
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APPENDIX B

ADDITIONAL RESULTS OF THE HOMOGENEOUS-CASE
PUFF -MARTIN COMPUTATION

The following tables give additional results from the computations
described in Chapter IV. Each table gives the functions V(p) and p(p) for
a par?icula.r value of Pf, along with the parameters yu, p, €, P#, and PL-T'
The first eight tables give these results for equally spaced values of
ps = 0.6(0.2)2.0, the next two tables give results for the pand L-T zero
points, and the last table gives results for the L-T zero point using the
effective-mass approximation. The appropriate units are

Ps fermi~! P fermi™>
P fermi~?! £ Mev-f-3
V(p) Mev Py Mev-f 3
M Mev pL_T Mev-f~3

B fermi~!

The tables have been reproduced directly from a listing of the com-

puter output (except for the u-zero-point table). The least significant figures
are unrounded in some cases.

Note that the quantities p, €, PH’ and PL-T must be multiplied by a
degeneracy factor of four.
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EXACT SOLUTION

PF = 0.60000

MU = -6.9359

RHO = 0.002967

EPSILON = -0.00825

MU PRESSURE = -C.01232

L-T PRESSURE = -0.01032

P/PF P v(P)

0.98695 0.59217 -14.403
0.93253 0.55952 -T4.415
0.83970 0.50382 =Tu.440
0.71670 0.43002 -14.u478
0.57ukl4  0.34466 -14.523
0.42556 (0.25534 -14.564
0.28330 0.16998 -14.595
0.16030 0.09618 -14.613
0.06747 (0.040L4E -14.62C
0.01305 (.00783 -14.621

EXACT SOLUTION

PF = 0.80000

MU = -12.9995

RHO = 0.007406

EPSILON = -0.04191

MU PRESSURE = -(.C5u436
L-T PRESSURE = -0.04690

P/PF P vI(P)

0.98695 (.78956 -26.325
0.93253 0.7u4603 -26.550
0.83970 0.67176 -26.918
0.71670 0.57336 -27.365
0.57444 (C.45955 -27.813
0.42556 0.340u5 -28.189
0.28330 0.2266u4 -28.450
0.16030 0.12824 -28.593
0.06747 0.05397 -28.649
0.01305 0.0104Y -28.661

EXACT SOLUTION

PF = 1.00000

MU = -20.16u48

RHO = 0.014830

EPSILON = -0.14038

MU PRESSURE = -0.15865
L-T PRESSURE = -0.13638

P/PF P viP)

0.98695 0.98695 -41.073
0.93253 0.93253 -41.781
0.83970 0.83970 -42.930
0.71670 0.71670 -44,.321
0.57u44  0.57u44y -45.709
0.42556 0.42556 -46.873
0.28330 0.28330 -47.682
0.16030 0.16030 -48.126
0.06747 0.06747 -48.300
0.01305 0.01305 -48.336

RHO(P)

0.796u4T
0.80174
0.809u6
0.81764
0.82480
0.83015
0.83358
0.83537
0.836C5
0.83619

RHO(P)

0.84548
0.84898
0.85408
0.85943
0.86407
0.86751
0.86971
0.87085
0.87128
0.87137

RHO(P)

0.87020
0.87276
0.87645
0.88026
0.88353
0.88592
0.887uu
0.88822
0.88852
0.88858

EXACT SOLUTION

PF = 1.20000
MU = -26.4912
RHO = 0.025842

EPSILON = -0.34750

MU PRESSURE = -0.33709

L-T PRESSURE = -0.27767

P/PF P V(P)

0.98695 1.18434 -56.728
0.93253 1.11904 -58.282
0.83970 1.00765 -60.816
0.71670 0.86004 -63.902
0.5744u4 0.68932 -67.0C6
0.42556 0.51068 -69.628
0.28330 0.33996 -71.u459
0.16030 0.19235 -72.468
0.06747 0.08096 -72.863
0.01305 0.C1566 -72.945

EXACT SOLUTION

PF = 1.40000
MU = -29.5632
RHO = 0.040885

EPSILON = -0.67488

MU PRESSURE = -(0.53381

L-T PRESSURE = -0.38593

P/PF P vV(P)

0.98695 1.38173 -70.883
0.93253 1.30554 -73.680
0.83970 1.17559 -78.277
0.71670 1.00338 -83.932
0.57444 (.80421 -89.682
0.42556 (0.59579 -94.586
0.28330 0.39662 -98.036
0.16030 0C.22u41 -99.9u48
0.06747 0.09u46 -100.697
0.01305 0.01827 -100.853

EXACT SOLUTION

PF = 1.60000
MU = -27.1606
RHO = 0.060211

EPSILON = -1.05317
MU PRESSURE = -0.58220

L-T PRESSURE = -0.23624

P/PF [ v(P)

0.98695 1.57913 -81.303
0.93253 1.49205 -85.690
0.83970 1.34353 -92.969
0.71670 1.14672 =-102.03Y4
0.57444 0.91910 -111.365
0.42556 0.68090 -119.408
0.28330 0.45328 =-125.113
0.16030 0.25647 -128.289
0.06747 0C.10795 -129.536
0.01305 0.02087 -129.796

RHO(P)

0.87920
0.88129
0.88427
0.88729
0.88984
0.89169
0.89285
0.89345
0.89367
0.89372

RHO(P)

0.87633
0.87834
0.88114
0.88394
0.88625
0.88792
0.88895
0.88948
0.88968
0.88972

RHO(P)

0.86370
0.86605
0.86923
0.87233
0.87u487
0.87667
0.87778
0.87835
0.87857
0.87861



EXACT SOLUTION

PF = 1.80000

MU = -17.8419

RHO = 0.083850

EPSILON = -1.29668

MU PRESSURE = -0.19935
L-T PRESSURE = (0.55739

P/PF P viP)

0.98695 1.77652 -86.510
0.93253 1.67856 -92.695
0.83970 1.51147 -103.071
0.71670 1.29006 =-116.170
0.57444 1.03399 -129.836
0.42556 0.76601 =-141.751
0.28330 0.50994 =-150.271
0.16030 0.28853 -155.038
0.06747 0.12144 =156.915
0.01305 0.02348 =-157.306

EXACT SOLUTION

PF '= 2.00000

MU -1.3085

RHO = 0.111501

EPSILON = -1.1C0553

MU PRESSURE = (.95963

L-T PRESSURE = 2.u49883
P/PF R V(P)
0.98695 1.97391 -86.133

0.93253 1.86506 -94.076
0.83970 1.67941 =-107.617
0.71670 1.4334C =-12u4.993
0.57u444  1.14887 -143.391
0.42556 (.85113 =-159.625
0.28330 0.56660 =-171.330
0.16030 (.32059 =-177.912
0.06747 0.13494 -180.510
0.01305 0.02609 -181.051

EXACT SOLUTION

PF = 1.8u491

MU = -14.437
RHO = 0.09028
EPSILON = -1.3034

MU PRESSURE = 0.0000
L-T PRESSURE = 0.9073

P/PF P v(P)

0.98695 1.82u49 -86.92
0.93253 1.7243 -93.55
0.83970 1.5527 -104.72
0.71670 1.3252 -118.86
0.57444 1.0622 -133.67
0.42556 0.7869 -146.62
0.28330 0.5238 -155.89
0.16030 0.296u4 -161.09
0.06747 0.1248 -163.14

2.01305 0C.0241 -163.56

RHO(P)

0.842(8
0.8u45u48
0.84984
0.85393
0.85720
0.85949
0.86090
0.86162
0.86189
0.86194

RHO(P)

0.80842
0.81623
0.82358
0.82975
0.83444
0.83766
0.83961
0.84060
0.84097
0.84105

RHO(P)

0.8353
0.8392
0.8u40
0.8485
0.8520
0.8545
0.8560C
0.8568
0.8571
0.8572

EXACT SOLUTION

PF = 1.686u45

MU = -24.0275

RHO = 0.069908

EPSILON = -1.19026

MU PRESSURE = -C.uB8945
L-T PRESSURE = -0.00000

P/PF B viP) RHO(P)

0.98695 1.66L45 -84.2u3 0.85547
0.93253 1.57267 -89.393 0.85815
0.83970 1.u41612 -97.977 0.86171
0.71670 1.20868 -108.728 0.86515
0.57444 0.96876 -119.857 0.86793
0.42556 C.71769 -129.u498 0.86989
0.28330 0.u47778 =-136.359 0.87111
0.16030 0.27033 -140.187 0.87173
0.06747 ©0.11378 =-141.693 0.87196
0.01305 (©.02200 -142.006 0.87201

EFFECTIVE MASS SOLUTION WITH BETA = 0.89307

= 1.686u5
MU = -24.7664
RHO = 0.069823
EPSILON = -1.23233
MU PRESSURE = -0.49694
L-T PRESSURE = -0.00000

P/PF P v(P) RHO(P)

0.98695 1.66uL45 -85.218 0.85522
0.93253 1.57267 -91.105 0.85636
0.83970 1.41612 -100.193 0.85946
0.71670 1.20868 -110.591 0.86372
0.57444 0.968B76 -120.454 0.86780
0.42556 0.71769 -128.394 0.87092
0V.28330 (C.u7778 -133.752 0.87292
0.16030 0.27033 -136.645 0.87396
0.06747 C.11378 -137.766 0.87436
0.01305 0.02200 -137.998 0.87uu4u



APPENDIX C

ADDITIONAL RESULTS OF THE INHOMOGENEOUS-CASE
PUFF-MARTIN COMPUTATION

The following tables give additional results from the computation
described in Chapter V, after the tenth iteration. The tabulated functions
are the density p(z), the energy density €(z), and the three components
Volzw), Vl(zw), and V) (zw) of the effective potential.(S) The appropriate

units are
z fermi e Mev-f~3
w Mev Vo Mev
o fermi™3 Vi, Mev-f?

The tables have been reproduced directly from a listing of the com-
puter output. The least significant figures are unrounded in some cases.

Note that the functions p(z) and €(z) must be multiplied by a degen-
eracy factor of 4.



DENSITY ENERGY DENSITY EFFECTIVE POTENTIAL FOR OMEGA = -165.0C MEV

1 RHO z EPSILON z V ZERO V PERP V PARL
0. 0.00000 0. -0.00008 0. -0.0u4 0.01 0.01
0.33 0.00001 0.33 -0.00021 0.33 -0.C9 0.01 0.02
0.67 0.00002 0.67 -0.00052 0.67 -0.22 0.03 0.04
1.00 0.00C04 1.00 -0.00131 1.00 -0.51 0.07 0.09
1.33 0.00010 1.33 -0.00331 1.33 -1.18 0.17 0.21
1.67 0.00G25 1.67 -0.00826 1.67 -2.59 0.37 0.43
2.00 0.00064 2.00 -0.01982 2.00 -5.37 0.76 0.86
2.33 0.00156 2.33 -0.044 1L 2.33 -10.38 1.50 1.63
2.67 0.00360 2.67 -0.08781 2.67 -18.41 2.74 2.88
3.00 0.00762 3.00 -0.15222 3.00 -29.81 4.63 u.75
3.33 0.01443 3.33 -0.23215 3.33 -uu.11 7.21 7.26
3.67 0.02403 3.67 -0.32531 3.67 -60.11 10.31 10.28
4.00 0.03522 4.00 -0.43765 4.00 -76.32 13,61 13.48
4.33 0.04600 4.33 -0.57278 4.33 -91.36 16.67 16.48
4,67 0.05452 4,67 -0.72227 4.67 -104.21 1914 18.95
5.00 0.06006 5.00 -0.86840 5.00 -114.31 20.88 20.7u
5.33 0.06320 5.33 -0.99182 5.33 -121.59 22.00 21.91
5.67 0.06512 5.67 -1.07942 5.67 -126.36 22.68 22.65
6.00 0.06672 6.00 -1.13182 6.00 -129.23 23,14 23.13
6.33 0.06813 6.33 -1.16223 6.33 -130.94 23.46 23.46
6.67 0.06902 6.67 -1.18450 6.67 -132.08 23.67 23.67
7.00 0.06929 7.00 -1.20383 7.00 -132.95 23.78 23.78
7.33 0.06923 7.33 -1.21808 7.33 -133.55 23.83 23.83
7.67 0.06926 1.67 -1.22u52 7.67 -133.87 23.86 23.86
8.00 0.06952 8.00 -1.22499 8.00 -133.97 23.90 23.90
8.33 0.06982 8.33 -1.22460 8.33 -134.01 23.94 23.93
8.67 0.06991 8.67 -1.22691 8.67 -134.09 23.95 23.95
9.00 0.06977 9.00 -1.23045 9.00 -134.23 23.95 23.95
9.33 0.06962 9.33 -1.23390 9.33 -134.32 23.94 23.94
9.67 0.06965 9.67 -1.23157 9.67 -134.33 23.94 23.94

BT



EFFECTIVE POTENTIAL FOR OMEGA = -150.0C MEV EFFECTIVE POTENTIAL FOR OMEGA = -135.00 MEV
Z V ZERO V PERP V PARL z V ZERO V PERP V PARL
0. -0.04 0.01 0.01 0. -0.04 C.01 0.01
0.33 -0.09 0.01 0.02 0.33 -0.09 0.01 Q.02
0.67 -0.22 0.03 0.04 0.67 -0.22 0.03 0.0u
1.00 -0.52 0.07 0.10 1.00 =0.52 0.08 G.1C
1.33 -1.19 0.17 0.21 1.33 -1.20 0.17 0.21
1.67 -2.62 0.37 O.ub 1.67 -2.65 0.38 Colly
2.00 -5.43 C.77 0.87 2.00 -5.50 C.78 0.88
2.33 =-10.49 1.51 T.64 2.33 -10.62 1.53 1.65
2.67 -18.62 2.77 2.90 2.67 -18.85 2.80 2.93
3.00 =-30.17 4.68 4.79 3.00 -30.57 4.73 4.83
3.33 44,69 1.27 71.32 3.33 -45.31 7.35 7.39
3.67 -60.96 10.40 10.36 3.67 -61.87 1¢.50 10.46
4.00 -77.47 13.72 13.59 4.00 -78.69 13.84 13.72
4.33 =92,5i(9 16.79 16.62 4.33 -94.30 16.94 16.77
4.67 -1¢5.84 19.28 19.10 4.67 -107.58 19.44 19.27
5.00 -116.08 21.03 20.89 5.00 =117.96 21.20 21.07
5.33 -123.u44 22.15 22.07 5.33 =125.40 22.33 22.25
5.67 -128.26 22.84 22.81 5.67 -130.26 23.02 22.98
5.00 -131.17 23.30 23.29 6.00 =-133.21 23.48 23.47
5.33 -132.90 23.62 23.62 6.33 -134.97 23.80 23.8C
5.67 =134.07 23.83 23.83 6.67 =136.15 24.01 24.01
7.00 =134.94 23.94 23.94 7.00 -137.03 24,12 24.12
Te33 -135.54 23.99 23.99 7.33 -137.64 24,17 24,17
Te67 -135.86 24.02 24.02 T.67 =-137.95 24,20 24.20
3.00 -135.96 24.06 24.06 8.00 -138.C6 24 .24 24 .24
3.33 =-136.01 24.10 24.09 8.33 -138.11 24,28 24.28
3.67 =136.10 24.11 24.11 8.67 -138.20 24,29 24,29
7.00 -136.22 24,11 24,11 9.00 -138.33 24.29 24.29
7.33 -136.31 24.10 24,10 9.33 -138.41 24.28 24,28

.67 =1563352 24.10 24.10 9.67 -138.42 24,28 24,28

FI11



FFECTIVE POTENTIAL FOR OMEGA = -120.00 MEV EFFECTIVE POTENTIAL FOR OMEGA = -105.00 MEV

V ZERO V PERP V PARL z V ZERO V PERP V PARL
0. -0.C0Y 0.01 0.01 0. -0.04 0.01 0.01
0.33 -C.09 0.01 0.02 0.33 -0.09 0.01 0.02
0.67 -0.23 0.03 0.0k 0.67 -0.23 0.03 0.0k
1.00 -0.53 0.08 0.10 1.00 -0.54 0.08 0.10
1.33 -1.22 017 0.21 1.33 -1.24 0.18 0.22
1.67 -2.68 0.38 T 1.67 -2.73 0.39 0.45
2.00 -5.57 0.79 0.89 2.00 -5.65 0.81 0.90
2.33 -10.76 1.56 1.67 2.33 -10.92 1.58 1.69
2.67 -19.11 2.8Y 2.96 2.67 -19.40 2.88 3.00
3.00 -31.00 4.79 4.88 3.00 -31.49 4.86 4.95
3.33 -45.99 T.uh T.47 3.33 -46.75 7.54 7.57
3.67 -62.86 10.62 10.58 3.67 -63.95 10.76 10.71
4.00 -80.01 13.99 13.87 4.00 -81.45 .16 14.05
4.33 -95.92 17.11 16.95 4.33 -97.68 17.31 17.16
4.67 -109.43 19.63 19.47 4.67 -111.4k 19.84 19.69
5.00 -119.96 21.40 21.28 5.00 -122.12 21.63 21.51
5.33 -127.u48 22.53 22.45 5.33 -129.72 22.76 22.69
5.67 -132.39 23.22 23.19 5.67 -134.68 23.46 23.42
6.00 -135.37 23.68 23.67 6.00 -137.70 23.92 23.91
6.33 -137.17 24.01 24.01 6.33 -139.52 24,24 24,24
6.67 -138.37 24.22 24,22 6.67 -140.74 2L.46 24,46
7.00 -139.25 24.33 24 .33 7.00 -141.63 24.57 24.57
7.33 -139.85 24,37 24.38 7.33 -142.23 24.61 24.61
T.67 -140.17 24.40 2u.41 T.67 -142.55 2u4.64 24 .64
8.00 -140.28 24,44 24 .44 8.00 -142.66 24.68 24.68
8.33 -140.34 24.48 24.48 8.33 -142.73 24.72 24.72
8.67 -140.43 24.50 24.50 8.67 -142.82 24,74 24,74
9.00 -140.56 24.50 24.50 9.00 -142.94 24,73 24.73
9.33 -140.64 24,49 24,49 9.33 -143.02 24,72 24.72

9.67 -140.65 24.49 24,49 9.67 -143.03 24.73 24.73

STIT



EFFECTIVE POTENTIAL FOR OMEGA = -90.00 MEV EFFECTIVE POTENTIAL FOR OMEGA = -75.0C MEV

z V ZERO V PERP V PARL z V ZERO V PERP V PARL
0. =C.CY 0.01 0.01 0. -C0.04 0.01 0.01
0.33 -0.10 C.01 0.02 0.33 -C.1¢ C.01 0.02
0.67 -0.23 C.03 O.0u 0.67 -C.24 U.04 ¢.05
1.00 -0.55 C.08 0.10 1.00 -C.56 0.08 0.10
1.33 =l.26 0.18 0.22 1.33 =-1.29 0.19 0.22
1.67 =2.77 C.lg 046 1.67 =83 Celt1 O.u7
2.00 SS90 1) 0.83 0.91 2.00 -5.87 C.85 0.93
2<33 -11.11 1.61 1.72 2.33 -11.32 1.65 1.75
2.67 =955 2.94 3.04 2.67 -2C.11 3.00 3.10
3.00 -32.04 L.9y 5.02 3.00 =32.67 5.05 5.11
3.33 -47.60 71.66 7.68 3.33 -48.56 7.81 7.82
3.67 -65.16 10.92 10.87 3.67 -66.53 11.12 11.07
4.00 -83.C5 14.36 14.25 4.00 -84.83 14.61 T4.50
4.33 -99.62 17.54 17.40 4.33 =101.77 17.83 17.7C
h.67 =1113663 20410 19.96 b.67 =-116.06 20..41 20.28
5.00 =124 .47 21.90 21.79 5.00 =127.07 22.22 22.12
5.33 -132.16 23.04 22.97 5.33 -134.85 23.37 23.30
5.67 -137.17 23.7U4 23.70 5.67 -139.9¢ 24.06 24,03
6.00 -14C.21 24,20 24.19 6.00 =142.97 24,52 24.51
6.33 -142.07 24,52 24.52 6.33 -144.86 24.85 24 .85
6.67 -143.30 24,73 24,74 6.67 -146.11 25.06 25.07
7.00 —-144,27 24 .84 24 .85 7.00 =147.01 25.17 25.18
7.33 =144 .80 24 .89 24 .89 T.33 =147.60 25.22 25.22
T.67 -145.11 24.92 24,92 T.67 =-147.92 25.24 25.24
8.00 -145.24 24.96 24.96 8.00 =148.05 25.28 25.28
8.33 =145.30 25.00 25.00 8.33 -148.12 25.32 25.33
B.67 —-145.4C 25.02 25.02 8.67 -148.22 25.34 25.34
9.00 -145.52 25.01 25.01 9.00 -148.34 25.34 25.3Y4
9.33 =145,60 25.00 25.0C 9.33 =148.41 25.33 25.33

9.67 -145.61 25.00 25.00 Q.67 —148.42 25.33 25.33

911



EFFECTIVE POTENTIAL FOR OMEGA = -60.0C MEV EFFECTIVE POTENTIAL FOR OMEGA = -45.00 MEV

Y4 V ZERO V PERP V PARL ' 4 V ZERO V PERP V PARL
0. -0.04 0.01 0.01 0. -0.04 0.01 0.01
0.33 -0.10 0.02 0.02 0.33 -0.10 0.02 0.02
0.67 -0.24 0.04 0.05 0.67 -0.25 C.0u 0.05
1.00 -0.58 0.09 0.11 1.00 -0.60 0.09 0.11
1.33 -1.32 G.19 0.23 1.33 -1.36 0.20 0.24
1.67 -2.90 0.42 0.48 1.67 -2.98 O.lb 0.49
2.00 -6.00 0.87 0.95 2.00 -6.18 0.91 0.98
2.33 -11.58 1.70 1.79 2.33 -11.90 1.77 1.85
267 -20.57 3.09 317 2.67 —21.12 3.19 3.27
3.00 -33.4) 5.18 5.23 3.00 -34.3) 5.34 5.38
3.33 -49.69 8.00 8.00 3.33 -51.03 8.23 8.22
3.67 -68.10 11.36 11.31 3.67 -69.96 11.68 11.62
4.00 -86.87 14.91 14.81 4.00 -89.25 15.29 15.20
4.33 -104.22 18.17 18.05 u.33 -107.04 18.60 18.50
u.67 -118.80 20.79 20.67 u.67 -121.95 21.25 21.16
5.00 -129.99 22.61 22.52 5.00 -133.32 23.10 23.02
5.33 -137.85 23.76 23.70 5.33 -141.26 24.25 24.19
5.67 -142.94 24,46 24.43 5.67 -146.38 24.95 24.91
6.00 -146.04 24.92 24.91 6.00 -149.52 25.40 25.39
6.33 -147.95 25.24 25.25 6.33 -151.45 25.73 25.73
6.67 -149.22 25.46 25.46 6.67 -152.73 25.94 25.95
7.00 -150.12 25.57 25.57 7.00 -153.64 26.05 26.05
7.33 -150.72 25.61 25.61 7.33 -154.23 26.09 26.09
7.67 -151.03 25.64 25.64 7.67 -154 .54 26.12 26.1
8.00 -151.17 25.68 25.68 8.00 -154.68 26.15 26.16
8.33 -151.25 25.72 25.72 8.33 -154.77 26.20 26.20
8.67 -151.35 25.7h 25.74 8.67 -154.87 26.22 26.22
9.00 -151.46 25.73 25.73 9.00 -154.98 26.21 26.21
9.33 -151.53 25.72 25.72 9.33 -155.04 26.20 26.19

9.67 -151.54 25.72 25.72 9.67 -155.05 26.20 26.20

AIL



EFFECTIVE POTENTIAL FOR OMEGA = -30.00 MEV EFFECTIVE POTENTIAL FOR OMEGA = -15.00 MEV

Z V ZERO V PERP V PARL z V ZERO V PERP V PARL
0. -C.CL 0.01 0.01 0. -0.05 0.01 0.01
0.33 -C0.11 L.02 0.02 0.33 -0.12 0.02 0.02
0.67 -0.26 U0l G.05 0.67 -0.28 U.0u 0.05
1.00 -0.62 0.09 011 1.00 -0.65 0.10 0.12
1.33 -1.42 C.21 0.25 1.33 -1.49 0.23 0.26
1.67 =Sis 11 O.u6 0.52 1.67 S5a25 0.50 0.55
2.00 =640 0.96 1.02 2.00 =6.71 1.03 1.09
2.33 =231 1.85 1.93 2.33 -12.88 1.98 2.04
2.67 =2ils 85 3.34 3.40 2.67 -22.890 3.55 3.59
3.00 -35.44 5.57 5.59 3.00 -36.95 5.89 5.8¢9
335 -52.70 8.55 8.52 3.33 -54.90 9.00 8.96
3.67 =225 12.09 12.03 3.67 -75.18 12.67 12.61
4.00 =922 15.79 15.71 4.00 =951 16.48 1642
4.33 =110.41 19.17 19.09 4.33 -114.63 19.94 19.88
4,67 -125.66 21.85 21.78 4.67 -130.23 22.66 22.61
5.00 522 23.71 23.65 5.00 -141.96 24,53 24 .48
5.33 -145.23 24 .86 24.81 5.33 =150.02 25.67 25.62
S5.67 -150.38 25.56 25.52 S.67 =155516 26.35 26.31
6.00 =153.53 26.01 26.00 6.00 -158.31 26.79 26.78
6.33 -155.48 26.33 2634 6.33 -16C.28 27.11 27.12
6.67 -156.78 26454 26455 6.67 -161.58 27.32 27.34
7.00 =157s68 26.65 26.65 7.00 -162.48 27.42 27 .43
7.33 -158.26 26.69 26.69 T.33 -163.05 27.46 2746
T.67 -158.57 26.71 26.71 T.67 -163.35 27.49 27.48
8.00 =15B8572 26.75 26.75 8.00 -163.50 27.52 27.52
8.33 -158.81 26.79 26.80 8.33 -163.61 27.57 27.57
8.67 -158.92 26.81 26.82 8.67 =-163.71 27.59 27.59
9.00 =159502 26.81 26.81 9.00 -163.81 27.58 27.58
9.33 -159.08 26.80 26.79 9.33 -163.86 27.57 27.56

9.67 -159.09 26.80 26.80 9.67 -163.88 27.57 27.56

Q11
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